- •1 Введение. Oсновныe сведения об автоматических системах
- •2 Производственный процесс как объект автоматизации
- •Как технология автоматизации вписывается в современный мир
- •Для чего необходимо управлять технологическим процессом?
- •Тп (технологический процесс) как объект управления
- •3 Основные критерии управления
- •4 Система управления
- •5 Приложения технологии автоматического управления
- •6 Классификация элементов автоматики
- •Датчики
- •Усилители
- •Программируемые логические контроллеры (plc)
- •Структура ввода/вывода между процессом и управляющим элементом.
- •7 Современные тенденции автоматизации производства
- •2 Идея "передающего элемента"
- •Линеаризация физических систем
- •Принцип суперпозиции
- •Свойство гомогенности
- •3 Порядок линейной системы
- •4 Управляемая система (controlled system) Что такое управляемая система?
- •5 Сигналы
- •Математическое представление сигналов
- •Дельта-функция (функция Дирака)
- •Синусоидальный (гармонический) сигнал
- •6 Выходной ответ системы (step response)
- •7 Типичные ответы на входное ступенчатое изменение технических систем с различными характеристиками
- •2 Примеры управляемых систем (объектов управления)
- •3 Характеристики объектов и систем автоматического управления Статические характеристики элементов
- •Свойство инерции
- •4 Модели элементов и систем управления Основные модели
- •Статические характеристики
- •Работа системы в статике
- •Линеаризация нелинейной статической характеристики
- •5 Временные характеристики. Основные динамические характеристики
- •5 Временные характеристики. Основные динамические характеристики
- •Определение параметров передаточной функции объекта по переходной кривой
- •6 Приближенные динамические модели инерционных статических объектов управления
- •7 Классификация типовых динамических звеньев
- •1) Усилительное звено (пропорциональное)
- •2) Интегрирующее
- •2.1) Идеальное интегрирующее
- •3) Дифференцирующее.
- •3.1) Идеальное дифференцирующее
- •3.2) Реальное дифференцирующее
- •4) Апериодическое (инерционное)
- •5) Запаздывающее
- •6) Звенья второго порядка
- •8 Соединения звеньев
- •1) Последовательное соединение.
- •2) Параллельное соединение.
- •3) Обратная связь
- •1 Разомкнутое (открытое) управление
- •Управление без обратной связи против управления с обратной связью
- •2 Открытый контур управления
- •Разомкнутое (открытое) управление
- •3 Простая измерительная цепь
- •4 Метрологические характеристики измерительных преобразователей
- •5 Обозначения элементов систем автоматики (средств автоматизации)
- •1 Обработка сигналов
- •Виды сигналов
- •2 Преобразование сигналов датчиков в стандартные управляющие сигналы. Преобразователи.
- •Преобразователь давления
- •Преобразователь температуры
- •3 Стандарты на аналоговые сигналы
- •4 Преобразование аналоговых величин в дигитальные. Оцифровка выходов датчиков Дискретизация сигналов. Преобразование аналоговых и цифровых сигналов. Обработка измерительной информации
- •Устройство обработки сигнала
- •5 Масштабирование
- •Как преобразовать входной аналоговый сигнал в инженерные единицы?
- •Пример цифро-аналогового преобразования
- •Преобразование 12-ти битового сигнала в инженерные единицы
- •Линеаризация величин
- •6 Выбор интервала дискретизации
- •Время преобразования
- •7 Цифровая фильтрация аналоговых сигналов
- •Фильтр аналоговых входов
- •1 Цифровая система управления
- •2 Управление техническим процессом
- •3 Измерительная информация и средства измерений
- •4 Цифровые измерительные системы и их компоненты
- •5 Машинное представление цифровых результатов измерений
- •6 Хранение и передача результатов измерений в цифровых системах
- •7 Общие сведения о промышленных сетях
- •1 Алгоритм управления
- •Определение алгоритма
- •Управление и алгоритмы. Логическая схема понятий
- •Исполнитель алгоритмов
- •2 Свойства алгоритма
- •Линейный алгоритм
- •3 Основные элементы блок-схемы алгоритма
- •4 Алгоритм функционирования асу
- •5 Типовые алгоритмы управления в линейных асу
- •Линейные алгоритмы управления
- •Управление с обратной связью
- •Циклы и ветвления в алгоритмах
- •Системы с программным управлением
- •6 Основные функции, используемые в цифровой технологии Логические элементы
- •Практическое значение алгебры логики
- •1 Основы технологии систем с замкнутым контуром управления
- •2 Что такое технология систем с замкнутым контуром?
- •Определения
- •Что такое управляемая система?
- •Последовательность в этой системе управления
- •Система с замкнутым контуром управления
- •3 Управление с обратной связью (ос)
- •4 Управляемая система (controlled system)
- •5 Контроллер (plc)
- •Выход plc
- •Динамика контроллера
- •Интегральный выход контроллера (I -контроллер)
- •Дифференциальный выход контроллера (d-контроллер)
- •1 Виды управления. Цель управления.
- •Заданное командное управление
- •Прямое (последовательное) управление
- •Управление в контуре обратной связью
- •2 Понятие качества процесса управления
- •Качественные критерии системы управления
- •Оценки качества управления
- •Классификация внешних воздействий
- •3 Показатели качества качества управления асу
- •4 Показатели качества управления асу в установившемся динамическом режиме
- •5 Показатели качества управления асу в переходном режиме
- •Характер затухания переходного процесса
- •6 Прямые показатели качества процесса управления (регулирования) по каналу задания
- •Степень затухания
- •7 Качественные критерии для реакции на помехи. Прямые показатели качества процесса управления по каналу возмущения и шумов измерений
- •8 Что такое устойчивость асу?
- •Основные условия устойчивости
- •9 Причины неустойчивости асу
- •10 Свойства, усложняющие управление
- •Нелинейность процесса
- •3. Изменение условий самого процесса.
- •5. Внутренние взаимосвязи.
- •1 Автоматическое управление с импульсными контроллерами: особенности двухпозиционных и трехпозиционных контроллеров
- •2 Двухпозиционные регуляторы (On-off controller)
- •3 Гистерезис
- •4 Алгоритмы двухпозиционного регулирования
- •5 Процессы управления с двухпозиционным законом
- •6 Виды и логика работы двухпозиционных регуляторов и систем сигнализации
- •Абсолютная (независимая) сигнализация
- •7 Двухпозиционное импульсное управление
- •8 Дополнительные функциональные возможности двухпозиционных регуляторов
- •Недостатки двухпозиционного регулирования
- •9 Трехпозиционные регуляторы Назначение. Принцип работы
- •10 Алгоритмы трехпозиционного регулирования
- •Зона гистерезиса
- •11 Процессы регулирования с трехпозиционным законом
- •12 Система управления с позиционным регулированием
- •1 Повторение. Общие положения Идентификация моделей динамических систем
- •Расчет параметров
- •3 Строение pid - контроллера
- •Pi контроллер
- •1 Выбор параметров pid контроллеров
- •P контроллер
- •Pd контроллер
- •Pid контроллер
- •Топология параллельного pid
- •Алгоритм pid контроллера
- •Определение динамических характеристик объекта регулирования
- •2 Рекомендации по выбору закона регулирования и типа регулятора
- •3 Основные принципы оптимизации для pid контроллеров
- •Время регулирования для различных типов регуляторов
- •4 Методы настройки параметров
- •1. Метод Ziegler-Nichols (Циглера Никольса) - Настройка по процессу двухпозиционного регулирования по релейному закону:
- •Параметры настройки в соответствии с рекомендациями Циглера-Никольса
- •Эксперимент в замкнутом контуре
- •Ручная настройка, основанная на правилах
- •5 Совместимость типа управляемой системы с соответствующим типом контроллера
- •Причины появления времени мёртвой зоны
- •6 Пример настройки в контуре температуры Этап 1
- •Этап 2 Настройка диффференциальной компоненты tD .
- •Этап 3 Настройка интегральной компоненты tI .
- •1 Введение
- •2 Характеристики p, I, d и контроллеров в plc
- •4 Общие рекомендации по разработке pid -регулятора plc
- •Критерий качества регулятора plc
- •5 Выбор интервала дискретизации
- •6 Аспекты программирования Время мертвой зоны (Dead Time)
- •Алгоритмы программирования
- •Единицы контроллера
- •Дифференциальное действие и фильтр
- •7 Использование фильтра сигналов в pid контуре
- •Алгоритм фильтра выхода контроллера (со)
- •8 Адаптивное регулирование
- •9 Нечеткая логика в pid -регуляторах Нечеткая логика, нейронные сети и генетические алгоритмы
- •Нечеткая логика в pid -регуляторах
- •Принципы построения нечеткого pi -регулятора
5 Временные характеристики. Основные динамические характеристики
Передаточные свойства элементов АСУ в динамическом режиме описывают с помощью динамических характеристик.
Основные динамические характеристики - передаточная функция, дифференциальное уравнение, временные характеристики: переходная функция.
Переходная функция h(t) элемента – изменение во времени выходной величины y(t) элемента при единичном ступенчатом воздействии и нулевых начальных условиях.
Переходная функция может быть задана: в виде графика; в аналитическом виде.
Переход системы от одного установившегося режима к другому при каких-либо входных воздействиях называется переходным процессом. Переходные процессы могут изображаться графически в виде кривой y(t).
5 Временные характеристики. Основные динамические характеристики
Передаточные свойства элементов АСУ в динамическом режиме описывают с помощью динамических характеристик.
Основные динамические характеристики - передаточная функция, дифференциальное уравнение, временные характеристики: переходная функция.
Переходная функция h(t) элемента – изменение во времени выходной величины y(t) элемента при единичном ступенчатом воздействии и нулевых начальных условиях.
Переходная функция может быть задана: в виде графика; в аналитическом виде.
Переход системы от одного установившегося режима к другому при каких-либо входных воздействиях называется переходным процессом. Переходные процессы могут изображаться графически в виде кривой y(t).
Рис. 7 График переходного процесса нагрева сушильного шкафа
Например, процесс нагрева сушильного шкафа до установившегося значения может иметь вид, представленный на рисунке 7.
Переходный процесс характеризует динамические свойства системы, ее поведение. Следует различать динамические и статические характеристики, поскольку они строятся в разных координатах и характеризуют различные свойства системы. Зная набор динамических характеристик при различных входных воздействиях, можно построить статическую характеристику, но по статической характеристике восстановить динамику невозможно.
Поскольку входные воздействия могут изменяться во времени, то и переходные характеристики будут каждый раз разные. Для простоты анализа систем входные воздействия приводят к одному из типовых видов сигналов (Рис. 8).
Рис. 8 Типовые виды сигналов
В зависимости от вида входного воздействия переходные характеристики могут иметь разное обозначение:
Переходной характеристикой h(t) называется реакция объекта на единичное ступенчатое воздействие (сигнал) при нулевых начальных условиях, т.е. при х(0) = 0 и у(0) = 0.
Импульсной характеристикой w(t) называется реакция объекта на d-функцию при нулевых начальных условиях.
При подаче на вход объекта синусоидального сигнала на выходе, как правило, в установившемся режиме получается также синусоидальный сигнал, но с другой амплитудой и фазой: y = Aвых*sin(w*t + j), где Aвых - амплитуда, w - частота сигнала, j - фаза.
Частотной характеристикой (ЧХ, АФХ и др.) называется зависимость амплитуды и фазы выходного сигнала системы в установившемся режиме при приложении на входе гармонического воздействия.
Определение параметров передаточной функции объекта по переходной кривой
Процесс получения передаточной функции объекта, исходя из данных о переходном процессе, называется идентификацией объекта.
Предположим, что при подаче на вход некоторого объекта ступенчатого воздействия была получена переходная характеристика (Рис. 9). Требуется определить вид и параметры передаточной функции. Предположим, что передаточная функция имеет вид (инерционное звено с запаздыванием).
Рис. 9 Переходная характеристика
Параметры передаточной функции: К - коэффициент усиления, Т - постоянная времени, t - запаздывание.
Коэффициентом усиления называется величина, показывающая, во сколько раз данное звено усиливает входной сигнал (в установившемся режиме), и равная отношению выходной величины у в установившемся режиме ко входной величине х:
Установившееся значение выходной величины ууст - это значение у при t , стремящемся к бесконечности..
Запаздыванием t называется промежуток времени от момента изменения входной величины х до начала изменения выходной величины у. Свойство запаздывания – это реакция системы на входное воздействие, т.е. изменение выходного сигнала запаздывает по отношению к входному.
Определение оптимальной скорости переходного процесса позволяет ввести постоянную времени Т – это время, за которое выходной сигнал системы управления достиг бы установившегося значения в переходном процессе, если б изменялся с максимальной скоростью. Т – есть только у устойчивых системы управления.
Постоянная времени Т может быть определена несколькими методами в зависимости от вида передаточной функции. Для рассматриваемой передаточной функции 1-го порядка Т определяется наиболее просто: сначала проводится касательная к точке перегиба, затем находятся точки пересечения с осью времени и асимптотой yуст; время Т определяется как интервал времени между этими точками.
В случае, если на графике между точкой перегиба имеется вогнутость, определяется дополнительное запаздывание tдоп, которое прибавляется к основному: t = t + tдоп.
Рис. 10 Кривая разгона
Кривая разгона - реакция объекта (системы) на единичное ступенчатое воздействие при нулевых начальных условиях. На практике кривая разгона определяется экспериментальным путем и используется в качестве исходных данных для анализа и синтеза систем автоматического управления исследуемым объектом.
Устойчивая система обладает свойством самовыравнивания, т.е. способностью переходить из одного установившегося состояния в другое по окончании переходного процесса. Существуют неустойчивые системы, когда по окончании переходного процесса она все больше и больше отклоняется от положения равновесия. Существуют нейтральные системы.
Пример. Уровень воды в баке не зависит в состоянии равновесия от расхода и притока, т.е. у него нет статической характеристики. Такие системы называют астатическими.
