Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
21 (2с)МДК.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
129.02 Кб
Скачать
  1. Тестовые задания с.36 № 54.

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ г. МОСКВЫ

ГОУ СПО ПК №15

115404, Москва, Бирюлевская ул., 28

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ

по курсу: «Теоретические основы

начального курса математики»

Специальность 050709

База: основное общее образование

УТВЕРЖДАЮ:

Зам.директора по учебной работе

17 апреля 2008 г.

Руководитель предметной комиссии

1. Декартово произведение множеств. Изображение декартова

произведения двух числовых множеств на координатной плоскости.

  1. Тестовые задания с.28 № 27.

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ г. МОСКВЫ

ГОУ СПО ПК №15

115404, Москва, Бирюлевская ул., 28

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ

по курсу: «Теоретические основы

начального курса математики»

Специальность 050709

База: основное общее образование

УТВЕРЖДАЮ:

Зам.директора по учебной работе

17 апреля 2008 г.

Руководитель предметной комиссии

  1. Необходимое и достаточное условия.

  1. При сравнении чисел 5 и 8 ученик выполнил следующую запись: 5 > 8.

Каковы могут быть причины ошибки? Как Вы организуете диагностику выявления причин ошибки?

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ г. МОСКВЫ

ГОУ СПО ПК №15

115404, Москва, Бирюлевская ул., 28

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ

по курсу: «Теоретические основы

начального курса математики»

Специальность 050709

База: основное общее образование

УТВЕРЖДАЮ:

Зам.директора по учебной работе

17 апреля 2008 г.

Руководитель предметной комиссии

  1. Правила построения отрицания высказываний различной структуры

.

  1. Сборник задач по математике с.58 № 239

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ г. МОСКВЫ

ГОУ СПО ПК №15

115404, Москва, Бирюлевская ул., 28

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ

по курсу: «Теоретические основы

начального курса математики»

Специальность 050709

База: основное общее образование

УТВЕРЖДАЮ:

Зам.директора по учебной работе

17 апреля 2008 г.

Руководитель предметной комиссии

  1. Дистрибутивные (распределительные) законы, связывающие операции объединения и пересечения множеств.