
- •Жидкость и ее свойства.
- •2.Коэффициенты сжимаемости.
- •Закон Ньютона о внутреннем трении жидкости.
- •Коэффициенты вязкости. Условная вязкость.
- •Вискозиметр Энглера
- •Силы, действующие в жидкости.
- •Давление в точке покоящейся жидкости.
- •Свойства давления в точке покоящейся жидкости.
- •Дифференциальные уравнения равновесия жидкости в двух формах.
- •Относительный покой жидкости.
- •Основное уравнение гидростатики.
- •13.Манометрическое и вакуумное давление.
- •14. Сообщающиеся сосуды
- •15. Сила давления жидкости на плоскую стенку
- •Центр давления
- •С ила давления жидкости на криволинейную стенку.
- •Тело давления
- •Закон Архимеда
- •Методы описания движения
- •Виды движения
- •Элементы струйной модели
- •Потоки и их виды
- •Гидравлические элементы потока.
- •28. Дифференциальное уравнение движения идеальной жидкости
- •3.2. Уравнение Бернулли для идеальной жидкости
- •35.Уравнение Бернулли для элементарной струйки реальной жидкости
- •3.3. Уравнение Бернулли для реальной жидкости
- •37. Коэффициент Кориолиса
- •38. Мощность потока
- •39. Практическое применение уравнения Бернулли
- •40. Потери напора по длине
- •41. Потери напора в местных сопротивлениях
- •42. Режимы движения жидкости.
- •43. Опыт Рейнольдса
- •44. Коэффициент Дарси
- •Формула Дарси — Вейсбаха
- •[Править] Определение коэффициента потерь на трение по длине
- •[Править] Определение коэффициента Дарси для местных сопротивлений
- •45. Местные сопротивления
- •46. Расчет простого трубопровода
- •47. Истечение жидкости через насадки
- •48. Истечение жидкости через малые отверстия
- •49. Параллельное соединение трубопроводов
- •50. Последовательное сопротивление трубопроводов.
Основное уравнение гидростатики.
Гидростатикой называется раздел гидравлики, в котором рассматриваются законы равновесия жидкости и их практическое применение.
Рассмотрим распространенный случай равновесия жидкости, когда на нее действует только одна массовая сила - сила тяжести, и получим уравнение, позволяющее находить гидростатическое давление в любой точке рассматриваемого объема жидкости. Это уравнение называется основным уравнением гидростатики.
Пусть жидкость содержится в сосуде (рис.2.2) и на ее свободную поверхность действует давление P0 . Найдем гидростатическое давление P в произвольно взятой точке М, расположенной на глубине h. Выделим около точки М элементарную горизонтальную площадку dS и построим на ней вертикальный цилиндрический объем жидкости высотой h. Рассмотрим условие равновесия указанного объема жидкости, выделенного из общей массы жидкости. Давление жидкости на нижнее основание цилиндра теперь будет внешним и направлено по нормали внутрь объема, т.е. вверх.
Рис. 2.2. Схема для вывода основного уравнения гидростатики
Запишем сумму сил, действующих на рассматриваемый объем в проекции на вертикальную ось:
PdS - P0 dS - ρghdS = 0
Последний член уравнения представляет собой вес жидкости, заключенный в рассматриваемом вертикальном цилиндре объемом hdS. Силы давления по боковой поверхности цилиндра в уравнение не входят, т.к. они перпендикулярны к этой поверхности и их проекции на вертикальную ось равны нулю. Сократив выражение на dS и перегруппировав члены, найдем
P = P0 + ρgh = P0 + hγ
Полученное уравнение называют основным уравнением гидростатики. По нему можно посчитать давление в любой точке покоящейся жидкости. Это давление, как видно из уравнения, складывается из двух величин: давления P0 на внешней поверхности жидкости и давления, обусловленного весом вышележащих слоев жидкости.
Из основного уравнения гидростатики видно, что какую бы точку в объеме всего сосуда мы не взяли, на нее всегда будет действовать давление, приложенное к внешней поверхности P0. Другими словами давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям одинаково. Это положение известно под названием закона Паскаля.
Поверхность, во всех точках которой давление одинаково, называется поверхностью уровня (подробно рассмотрим в п.2.6). В обычных условиях поверхности уровня представляют собой горизонтальные плоскости.
12. Закон Паскаля и практическое применение.
На основе закона Паскаля работают различные гидравлические устройства: тормозные системы, прессы и др.
Данный закон является прямым следствием отсутствия сил трения покоя в жидкостях и газах.
Закон Паскаля неприменим в случае движущейся жидкости (газа), а также в случае, когда жидкость (газ) находится в гравитационном поле; так, известно, что атмосферное и гидростатическое давление уменьшается с высотой.
Закон Паскаля- давление на поверхность жидкости, производимое внешними силами, передаётся жидкостью одинаково во всех направлениях. Установлен Б. Паскалем (опубл. в 1663). На законе Паскаля основано действие гидравлических прессов и других гидростатических машин.
Применение закона Паскаля Закон нашел огромное применение в современном мире. Были созданы суперпрессы с давлением свыше 750 000 кПа. Закон лег в основу гидравлического привода, который в свою очередь обусловил появление гидроавтоматики, управляющей современными реактивными лайнерами, космическими кораблями, станками с числовым программным управлением, могучими самосвалами, горными комбайнами, прессами, экскаваторами...