
- •Жидкость и ее свойства.
- •2.Коэффициенты сжимаемости.
- •Закон Ньютона о внутреннем трении жидкости.
- •Коэффициенты вязкости. Условная вязкость.
- •Вискозиметр Энглера
- •Силы, действующие в жидкости.
- •Давление в точке покоящейся жидкости.
- •Свойства давления в точке покоящейся жидкости.
- •Дифференциальные уравнения равновесия жидкости в двух формах.
- •Относительный покой жидкости.
- •Основное уравнение гидростатики.
- •13.Манометрическое и вакуумное давление.
- •14. Сообщающиеся сосуды
- •15. Сила давления жидкости на плоскую стенку
- •Центр давления
- •С ила давления жидкости на криволинейную стенку.
- •Тело давления
- •Закон Архимеда
- •Методы описания движения
- •Виды движения
- •Элементы струйной модели
- •Потоки и их виды
- •Гидравлические элементы потока.
- •28. Дифференциальное уравнение движения идеальной жидкости
- •3.2. Уравнение Бернулли для идеальной жидкости
- •35.Уравнение Бернулли для элементарной струйки реальной жидкости
- •3.3. Уравнение Бернулли для реальной жидкости
- •37. Коэффициент Кориолиса
- •38. Мощность потока
- •39. Практическое применение уравнения Бернулли
- •40. Потери напора по длине
- •41. Потери напора в местных сопротивлениях
- •42. Режимы движения жидкости.
- •43. Опыт Рейнольдса
- •44. Коэффициент Дарси
- •Формула Дарси — Вейсбаха
- •[Править] Определение коэффициента потерь на трение по длине
- •[Править] Определение коэффициента Дарси для местных сопротивлений
- •45. Местные сопротивления
- •46. Расчет простого трубопровода
- •47. Истечение жидкости через насадки
- •48. Истечение жидкости через малые отверстия
- •49. Параллельное соединение трубопроводов
- •50. Последовательное сопротивление трубопроводов.
50. Последовательное сопротивление трубопроводов.
Последовательное соединение. Возьмем несколько труб различной длины, разного диаметра и содержащих разные местные сопротивления, и соединим их последовательно (рис. 6.3, а).
Рис. 6.3. Последовательное соединение трубопроводов
При подаче жидкости по такому составному трубопроводу от точки М к точке N расход жидкости Q во всех последовательно соединенных трубах 1, 2 и 3 будет одинаков, а полная потеря напора между точками М и N равна сумме потерь напора во всех последовательно соединенных трубах. Таким образом, для последовательного соединения имеем следующие основные уравнения:
Q1 = Q2 = Q3 = Q
ΣhM-N = Σh1 + Σh2 + Σh3
Эти уравнения определяют правила построения характеристик последовательного соединения труб (рис. 6.3, б). Если известны характеристики каждого трубопровода, то по ним можно построить характеристику всего последовательного соединения M-N. Для этого нужно сложить ординаты всех трех кривых.