
- •Жидкость и ее свойства.
- •2.Коэффициенты сжимаемости.
- •Закон Ньютона о внутреннем трении жидкости.
- •Коэффициенты вязкости. Условная вязкость.
- •Вискозиметр Энглера
- •Силы, действующие в жидкости.
- •Давление в точке покоящейся жидкости.
- •Свойства давления в точке покоящейся жидкости.
- •Дифференциальные уравнения равновесия жидкости в двух формах.
- •Относительный покой жидкости.
- •Основное уравнение гидростатики.
- •13.Манометрическое и вакуумное давление.
- •14. Сообщающиеся сосуды
- •15. Сила давления жидкости на плоскую стенку
- •Центр давления
- •С ила давления жидкости на криволинейную стенку.
- •Тело давления
- •Закон Архимеда
- •Методы описания движения
- •Виды движения
- •Элементы струйной модели
- •Потоки и их виды
- •Гидравлические элементы потока.
- •28. Дифференциальное уравнение движения идеальной жидкости
- •3.2. Уравнение Бернулли для идеальной жидкости
- •35.Уравнение Бернулли для элементарной струйки реальной жидкости
- •3.3. Уравнение Бернулли для реальной жидкости
- •37. Коэффициент Кориолиса
- •38. Мощность потока
- •39. Практическое применение уравнения Бернулли
- •40. Потери напора по длине
- •41. Потери напора в местных сопротивлениях
- •42. Режимы движения жидкости.
- •43. Опыт Рейнольдса
- •44. Коэффициент Дарси
- •Формула Дарси — Вейсбаха
- •[Править] Определение коэффициента потерь на трение по длине
- •[Править] Определение коэффициента Дарси для местных сопротивлений
- •45. Местные сопротивления
- •46. Расчет простого трубопровода
- •47. Истечение жидкости через насадки
- •48. Истечение жидкости через малые отверстия
- •49. Параллельное соединение трубопроводов
- •50. Последовательное сопротивление трубопроводов.
35.Уравнение Бернулли для элементарной струйки реальной жидкости
3.3. Уравнение Бернулли для реальной жидкости
Уравнение Бернулли для потока реальной жидкости несколько отличается от уравнения
Дело в том, что при движении реальной вязкой жидкости возникают силы трения, на преодоление которых жидкость затрачивает энергию. В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии (рис.3.6).
Рис.3.6. Схема к выводу уравнения Бернулли для реальной жидкости
Потерянная
энергия или потерянный напор обозначаются
и
имеют также линейную размерность.
Уравнение Бернулли для реальной жидкости будет иметь вид:
Из рис.3.6 видно, что по мере движения жидкости от сечения 1-1 до сечения 2-2 потерянный напор все время увеличивается (потерянный напор выделен вертикальной штриховкой). Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2.
Кроме этого в уравнении появились еще два коэффициента α1 и α2, которые называются коэффициентами Кориолиса и зависят от режима течения жидкости ( α = 2 для ламинарного режима, α = 1 для турбулентного режима ).
Потерянная высота складывается из линейных потерь, вызванных силой трения между слоями жидкости, и потерь, вызванных местными сопротивлениями (изменениями конфигурации потока)
= hлин + hмест
С помощью уравнения Бернулли решается большинство задач практической гидравлики. Для этого выбирают два сечения по длине потока, таким образом, чтобы для одного из них были известны величины Р, ρ, g, а для другого сечения одна или величины подлежали определению. При двух неизвестных для второго сечения используют уравнение постоянства расхода жидкости υ1ω 1 = υ2ω2.
37. Коэффициент Кориолиса
Коэффициент Кориолиса. Для применения уравнения Бернулли необходимо знать величину удельной энергии[14, С.60] Коэффициент Кориолиса, представляющий собой отношение действительной кинетической энергии к кинетической энергии, вычисленной при условии движения всех частиц в сечении с одной и той же скоростью, равной средней скорости, может быть найден следующим образом.[256, С.43] Коэффициент Кориолиса при турбулентном режиме течения меняется в пределах от 1,11 до 1,15. Большие значения коэффициента Кориолиса соответствуют меньшим, числам Рейнольдса .[7, С.22] Коэффициент Кориолиса k — есть функция от числа Рейнольдса и геометрических характеристик горловины_(отнссительной толщины ее кромок).[212, С.129] Коэффициент Кориолиса а является определенной величиной и характеризует степень неравномерности распределения скоростей по живому сечению потока. Установлено, что а> I и обычно его значение заключено в пределах а =1,03-=- 1,1. В инженерной практике чаще всего принимают а=1. В некоторых случаях, например, при явно ламинарном режиме движения жидкости в[294, С.52] Обычно коэффициент Кориолиса определяется опытным путем. Он зависит от степени неравномерности распределения скоростей в поперечном сечении потока и всегда больше единицы; для так называемого ламинарного режима (см. стр. 115) в цилиндрической трубе а = 2, а для так называемого турбулентного режима а = = 1,0454-1,10.[221, С.78] Однако коэффициент Кориолиса следует учитывать лишь при ламинарном режиме течения, когда а = 2. Для турбулентных потоков можно принимать а=1.[201, С.33]