Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка по спец разделам естествознания.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
17.37 Mб
Скачать

1.5. Электромагнитные явления

По закону Кулона сила взаимодействия между двумя точечными зарядами описывается выражением ,

где и – величины зарядов; = – электрическая постоянная; – расстояние между зарядами; – диэлектрическая проницаемость среды.

Напряженность электрического поля , где – сила, действующая на заряд . Напряженность поля нескольких зарядов равна векторной сумме напряженностей отдельных зарядов: .

Напряженность поля точечного заряда (равномерно заряженного шара или сферы) на расстоянии от точечного заряда (центра шара или сферы) определяется как

,

где – величина точечного заряда.

Работа, совершаемая при перемещении заряда в однородном электрическом поле , где – величина перемещения; – угол между направления векторов напряженности электрического поля и перемещении. Потенциал в какой-либо точке электрического поля , где – потенциальная энергия заряда , помещенного в данную точку.

Работа, совершаемая при перемещении заряда из точки поля с потенциалом в точку с потенциалом , .

Потенциал поля точечного заряда .

Напряженность электрического поля и потенциал связаны соотношением

.

В случае однородного поля – поля плоского конденсатора , где ( ) – разность потенциалов между пластинами конденсатора; – расстояние между ними.

Потенциал уединенного проводника и его заряд связаны соотношением , где – емкость проводника.

Емкость плоского конденсатора , где – площадь каждой пластины конденсатора.

Емкость уединенного шара .

Емкость системы конденсаторов:

– при параллельном соединений

– при последовательном соединений

Энергия заряженного проводника .

Объемная плотность энергии электрического поля: .

Сила тока численно равна количеству электричества, проходящему через поперечное сечение проводника в единицу времени: , если , то .

Плотность электрического поля , где – площадь поперечного сечения проводника.

Закон Ома для участка цепи , где – разность потенциалов на концах участка и , где – удельное сопротивление, и – длина и площадь поперечного сечения проводника.

Работа электрического тока цепи .

Для замкнутой цепи закон Ома имеет вид , где – ЭДС источника тока; – внешнее сопротивление; – внутренне сопротивление источники тока. Полная мощность, выделенная в цепи, .

Первый закон Кирхгофа – алгебраическая сумма сил токов, сходящихся в узле, равна нулю, .

Второй закон Кирхгофа – в любом замкнутом контуре алгебраическая сумма падений потенциала на отдельных участках цепи равна алгебраической сумме ЭДС источников, включенных в данном контуре, .

В соответствии с законом Био–Савара–Лапласа элемент контура , по которому течет ток , создает в некоторой точке пространства магнитное поле напряженностью , где – расстояние от элемента до точки , – угол между радиус-вектором и элементом .

Напряженность магнитного поля в центре кругового тока , где – радиус кругового контура с током.

Напряженность магнитного поля бесконечно длинного проводника с током на расстояний определяется формулой .

Напряженность магнитного поля внутри бесконечно длинного соленоида и тороида , где – число витков на единицу длины.

Магнитная индукция связана с напряженностью магнитного поля соотношением , где Гн/м – магнитная постоянная; – магнитная проницаемость среды.

Объемная плотность энергии магнитного поля .

Поток магнитной индукции сквозь контур , где – площадь контура; – угол между нормалью к плоскости контура и направлением магнитного поля.

На элемент проводника с током, находящимся в магнитном поле, действует сила Ампера:

,

где – угол между направлениями тока и магнитного поля.

Сила, действующая на заряженную частицу, движущуюся со скоростью в магнитном поле, определяется формулой Лоренца

,

где – заряд частицы и – угол между направлениями скорости частицы и магнитного поля.

ЭДС электромагнитной индукции в соответствии с законом Фарадея: .

Изменение потока магнитной индукции достигается, например, при изменении силы тока в самом контуре (явление самоиндукций).

При этом ЭДС самоиндукции , где – индуктивность контура.

Индуктивность соленоида , где – длина соленоида; – площадь его поперечного сечения; – число витков на единицу длины.

Энергия магнитного поля контура с током .