
- •1) Материя, объекты исследования в физике, методы исследования. Закон.
- •3) Ускорение при криволинейном поступательном движении: нормальное, тангенциальное и полное.
- •4) Кинематика вращательного движения.
- •5) Связь характеристик кинематики поступательного движения с характеристиками кинематики вращательного движения.
- •6. Кинематика колебательного движения: смещение, скорость, ускорение.
- •7) Законы Ньютона. Границы применимости законов Ньютона.
- •8) Силы: вес, трение, сила упругости.
- •9) Закон сохранения импульса, проекции импульса**
- •10)Кинетическая и потенциальная энергии.
- •11)Полная механическая энергия и закон ее сохранения.** Применение законов сохранения к ударам.
- •12. Границы движения. Потенциальная яма, потенциальный барьер.
- •13. Момент инерции точки относительно оси, момент инерции тела относительно оси вращения. Теорема Штейнера.***
- •15) Момент силы относительно точки, относительно оси вращения.***
- •16) *Основной закон динамики вращательного движения.***
- •17) * Момент импульса. Закон сохранения момента импульса.***
- •18) Гравитационное поле Земли и его характеристики
- •19) Постулаты частной теории относительности Эйнштейна. Преобразования Лоренца и следствия из них.
- •1. Первый постулат - принцип относительности (по)
- •2. Второй постулат – о предельной скорости распространения физических сигналов:
- •20) Векторная диаграмма колебательного движения и ее применение при сложении одинаково направленных колебаний.( навряд ли правильно)
- •22) Затухающие колебания. Уравнение, коэффициент затухания, логарифмический декремент затухания.
- •23) Вынужденные колебания, резонанс
- •24) Термодинамическая система (тс), методы исследования, идеальный газ, газовые законы.
- •25) Термодинамические параметры, уравнение Менделеева- Клапейрона.
- •26) Внутренняя энергия тс, изменение внутренней энергии.
- •27) Работа при изменении объема.
- •28) Теплоемкость (удельная, молярная, при постоянном объеме, при постоянном давлении).
- •29) Первое начало термодинамики и его применение к изопроцессам.****
- •31)Энтропия. Второе начало термодинамики.
- •32. * Вывод основного уравнения молекулярно-кинетической теории газов***(убейтесь сразу, если попадётся на экзамене)(слямзено с википедии, так что, если что упустил, проверьте)
- •33. Максвелловское распределение молекул по скоростям. Наиболее вероятная скорость. Зш распределения энергии по степеням свободы.
- •34)Распределение Больцмана. Барометрическая формула.
- •35) Жидкость. Поверхностное натяжение.
- •36) Капиллярные явления. Давление Лапласа
- •37. Явления переноса.*(не уверен, что пункты 1,2 и 3 нужны, но это так, на всякий случай).
- •38.Электрический заряд. Дискретность заряда. Закон сохранения электрического заряда. Закон Кулона.
- •39.Электростатическое поле. Напряженность электростатического поля. Принцип суперпозиции электростатических полей. Поле диполя.
- •40.Поток вектора напряженности электростатического поля.**Теорема Остроградского-Гаусса для электростатического поля в вакууме.
- •41.***Применение теоремы о-г к расчету некоторых электростатических полей в вакууме (точечного заряда, бесконечных плоскости и нити, сферы). Равномерно заряженная бесконечная плоскость
- •Бесконечная равномерно заряженная нить
- •42**Циркуляция вектора напряженности электростатического поля.
- •43.Потенциал электростатического поля. Принцип суперпозиции потенциала.
- •44.****Напряженность как градиент потенциала. Эквипотенциальные поверхности.
- •45.Нахождение разности потенциалов по напряженности поля для плоскости и нити.
- •46.**Типы диэлектриков. Поляризация диэлектриков. Поляризованность Сегнетоэлектрики.
- •47. Условия на границе раздела двух диэлектрических сред.
- •48.Проводники в электростатическом поле.
- •49.Электрическая емкость уединенного проводника. Конденсаторы.
- •50.**Энергия системы зарядов, уединенного проводника, конденсатора. Энергия электростатического поля.
- •51. Электрический ток. Сила и плотность тока. Сторонние силы. Электродвижущая сила и напряжение.
- •52. *Закон Ома для однородного, неоднородного участков цепи и замкнутой цепи.. Сопротивление.
- •53. *Работа и мощность тока. Закон Джоуля- Ленца.
- •54. ***Правила Кирхгофа для разветвленных цепей.
- •57. Закон Ампера. Взаимодействие токов.
- •58. Магнитное поле движущегося заряда.
- •59. *Сила Лоренца. Движение заряженной частицы в магнитном поле.
- •60. **Эффект Холла.
- •62. ***Явление электромагнитной индукции и самоиндукции.***Закон Фарадея, ****правило Ленца. (Трофимова, стр. 222-223)
- •63. Вращение рамки в магнитном поле
- •64. Индуктивность контура. *Токи при замыкании и размыкании.
- •65. * Взаимная индукция. Трансформаторы.
- •66. Энергия магнитного поля.
- •67.*Магнитные моменты электронов и атомов.
- •69. Намагниченность. Магнитное поле в веществе.
- •70. Ферромагнетики и их свойства.
- •71. ***Уравнения Максвелла для электромагнитного поля в интегральной форме.(интегралы заполняются только внизу. Вверху нет ничего)
- •72. ****Электромагнитный колебательный контур.
- •73. **Переменный ток. Векторная диаграмма.
- •74. **Резонанс токов.
- •75. **Резонанс напряжений.
- •76. Мощность, выделяемая в цепи переменного тока.
15) Момент силы относительно точки, относительно оси вращения.***
Момент силы относительной оси вращения - векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.
Момент силы относительно точки О - это вектор, модуль которого равен произведению модуля силы на плечо - кратчайшее расстояние от точки О до линии действия силы. Направление вектора момента силы перпендикулярно плоскости, проходящей через точку и линию действия силы, так, что глядя по направлению вектора момента, вращение, совершаемое силой вокруг точки О, происходит по часовой стрелке.
16) *Основной закон динамики вращательного движения.***
Закон формулируется так: «Момент силы, действующий на вращающееся тело, равен произведению момента инерции тела на угловое ускорение».
Основной закон динамики вращательного движения можно получить из второго закона Ньютона для поступательного движения твердого тела
,
-
основной закон
динамики вращательного движения.
17) * Момент импульса. Закон сохранения момента импульса.***
Момент импульса характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.
Закон сохранения момента импульса:
ω=const
Угловая скорость всех точек твёрдого тела постоянна и одинакова.
Закон сохранения момента импульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.
18) Гравитационное поле Земли и его характеристики
Гравитационное поле, или поле тяготения — физическое поле, через которое осуществляется гравитационное взаимодействие.
В рамках классической физики гравитационное взаимодействие описывается «законом всемирного тяготения» Ньютона, согласно которому сила гравитационного притяжения между двумя материальными точками с массами m1 и m2 пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними:
Здесь G — гравитационная
постоянная,
приблизительно равная
м³/(кг
с²), R —
расстояние между точками.
Гравитационное поле Земли характеризуется силой тяжести, потенциалом силы тяжести и различными его производными.
19) Постулаты частной теории относительности Эйнштейна. Преобразования Лоренца и следствия из них.
1. Первый постулат - принцип относительности (по)
Принцип относительности (ПО) гласит, что все физические законы имеют одинаковый вид во всех ИСО, т.е. физические законы инвариантны относительно перехода из одной ИСО в другую.
2. Второй постулат – о предельной скорости распространения физических сигналов:
В ЧТО (Частная Теория Относительности) постулируется независимость скорости света от скорости движения источника этого света или приемника.
Ключевым для понимания основ ЧТО является то, что в ней невозможно представить пространство-время как отдельные, независимые пространство и время. Темп хода часов в разных точках единого пространства-времени разный и зависит от скорости наблюдателя.
Преобразова́ния Ло́ренца — линейные (или аффинные) преобразования векторного (соответственно, аффинного) псевдоевклидова пространства, сохраняющее длины или, что эквивалентно, скалярное произведение векторов.
Следствия из преобразований Лоренца:
1. Если в одной системе отсчета некоторые события происходят в точках x1 и x2 в один и тот же момент времени t, то в другой системе отсчета эти события происходят в точках x'1 и x'2 в разные моменты времени t'1 и t'2:
Понятие одновременности оказывается зависящим от выбора системы отсчета.
2. Если в одной системе отсчета между двумя событиями, происходящими в одной и той же точке, проходит время t, то в другой системе отсчета между этими же событиями проходит время
Это соотношение выражает релятивистский эффект замедления времени в движущихся объектах.
3. Если в одной системе отсчета покоящаяся линейка имеет длину l, то в системе отсчета, в которой линейка движется со скоростью u вдоль своей оси, ее длина
Этот эффект называется релятивистским сокращением продольных размеров тела. Поперечные размеры тела не изменяются при переходе в другие инерциальные системы отсчета.
4. Если в одной системе отсчета тело имеет скорость v = (vx, vy, vz), то его скорость v' = (v'x, v'y, v'z) в другой системе отсчета равна
или в трехмерной
векторной форме
5. Из соотношений (n4), (n5) следует постоянство скорости c в различных системах отсчета. Действительно, если вычислить сумму квадратов левых частей этих равенств при условии
v2=(vx)2+(vy) 2+(vz) 2=c2, (n6)
получим
v'2=(v'x)2+ (v'y)2+(v'z) 2=c2. (n7)
Т. е. скорость c одинакова по величине во всех инерциальных системах отсчета (независимо от направления). Заметим, что направления скоростей v и v' в общем случае различны в разных системах отсчета.