Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на ФИЗИКУ(2 сесестр).docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
996.81 Кб
Скачать

12. Границы движения. Потенциальная яма, потенциальный барьер.

Потенциальная яма – область пространства, где присутствует локальный минимум потенциальной энергии частицы.

Если в потенциальную яму попала частица, энергия которой ниже, чем необходимая для преодоления краёв ямы, то возникнут колебания частицы в яме. Амплитуда колебаний будет обусловлена собственной энергией частицы. Частица, находящаяся на дне потенциальной ямы, пребывает в состоянии устойчивого равновесия, то есть при отклонении частицы от точки минимума потенциальной энергии возникает сила, направленная в противоположную отклонению сторону. Если частица подчиняется квантовым законам, то даже несмотря на недостаток энергии она с определённой вероятностью может покинуть потенциальную яму (явление туннельного эффекта).

Потенциа́льный барье́р — область пространства, разделяющая две другие области с различными или одинаковыми потенциальными энергиями. Характеризуется «высотой» — минимальной энергией классическойчастицы, необходимой для преодоления барьера.

13. Момент инерции точки относительно оси, момент инерции тела относительно оси вращения. Теорема Штейнера.***

Моментом инерции материальной точки относительно оси называется произведение массы точки на квадрат её расстояния до оси вращения.

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

где:

  •  — масса малого элемента объёма тела ,

  •  — плотность,

  •  — расстояние от элемента   до оси a.

Если тело однородно, то есть его плотность всюду одинакова, то

Теорема Штейнера

 момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела   относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела   на квадрат расстояния   между осями:

где

 — известный момент инерции относительно оси, проходящей через центр масс тела,

 — искомый момент инерции относительно параллельной оси,

 — масса тела,

 — расстояние между указанными осями.

14) Кинетическая энергия вращающегося тела.***Работа при вращательном движении.

     Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек, на которые это тело можно мысленно разбить:

 (6.4.1)

 

       Если тело вращается вокруг неподвижной оси z с угловой скоростью  , то линейная скорость i-й точки Ri – расстояние до оси вращения. Следовательно,

 

,

 (6.4.2)

 

       Сопоставив (6.4.1) и (6.4.2), можно увидеть, что момент инерции тела I является мерой инертности при вращательном движении, так же как масса m – мера инерции при поступательном движении.         В общем случае движение твердого тела можно представить в виде суммы двух движений – поступательного со скоростью  vc  и вращательного с угловой скоростью ω вокруг мгновенной оси, проходящей через центр инерции. Тогда полная кинетическая энергия этого тела

 

,       

 (6.4.3)

 

       Здесь Ic – момент инерции относительно мгновенной оси вращения, проходящей через центр инерции.

Работа вращающего момента равна произведению момента на угол поворота