
- •1) Материя, объекты исследования в физике, методы исследования. Закон.
- •3) Ускорение при криволинейном поступательном движении: нормальное, тангенциальное и полное.
- •4) Кинематика вращательного движения.
- •5) Связь характеристик кинематики поступательного движения с характеристиками кинематики вращательного движения.
- •6. Кинематика колебательного движения: смещение, скорость, ускорение.
- •7) Законы Ньютона. Границы применимости законов Ньютона.
- •8) Силы: вес, трение, сила упругости.
- •9) Закон сохранения импульса, проекции импульса**
- •10)Кинетическая и потенциальная энергии.
- •11)Полная механическая энергия и закон ее сохранения.** Применение законов сохранения к ударам.
- •12. Границы движения. Потенциальная яма, потенциальный барьер.
- •13. Момент инерции точки относительно оси, момент инерции тела относительно оси вращения. Теорема Штейнера.***
- •15) Момент силы относительно точки, относительно оси вращения.***
- •16) *Основной закон динамики вращательного движения.***
- •17) * Момент импульса. Закон сохранения момента импульса.***
- •18) Гравитационное поле Земли и его характеристики
- •19) Постулаты частной теории относительности Эйнштейна. Преобразования Лоренца и следствия из них.
- •1. Первый постулат - принцип относительности (по)
- •2. Второй постулат – о предельной скорости распространения физических сигналов:
- •20) Векторная диаграмма колебательного движения и ее применение при сложении одинаково направленных колебаний.( навряд ли правильно)
- •22) Затухающие колебания. Уравнение, коэффициент затухания, логарифмический декремент затухания.
- •23) Вынужденные колебания, резонанс
- •24) Термодинамическая система (тс), методы исследования, идеальный газ, газовые законы.
- •25) Термодинамические параметры, уравнение Менделеева- Клапейрона.
- •26) Внутренняя энергия тс, изменение внутренней энергии.
- •27) Работа при изменении объема.
- •28) Теплоемкость (удельная, молярная, при постоянном объеме, при постоянном давлении).
- •29) Первое начало термодинамики и его применение к изопроцессам.****
- •31)Энтропия. Второе начало термодинамики.
- •32. * Вывод основного уравнения молекулярно-кинетической теории газов***(убейтесь сразу, если попадётся на экзамене)(слямзено с википедии, так что, если что упустил, проверьте)
- •33. Максвелловское распределение молекул по скоростям. Наиболее вероятная скорость. Зш распределения энергии по степеням свободы.
- •34)Распределение Больцмана. Барометрическая формула.
- •35) Жидкость. Поверхностное натяжение.
- •36) Капиллярные явления. Давление Лапласа
- •37. Явления переноса.*(не уверен, что пункты 1,2 и 3 нужны, но это так, на всякий случай).
- •38.Электрический заряд. Дискретность заряда. Закон сохранения электрического заряда. Закон Кулона.
- •39.Электростатическое поле. Напряженность электростатического поля. Принцип суперпозиции электростатических полей. Поле диполя.
- •40.Поток вектора напряженности электростатического поля.**Теорема Остроградского-Гаусса для электростатического поля в вакууме.
- •41.***Применение теоремы о-г к расчету некоторых электростатических полей в вакууме (точечного заряда, бесконечных плоскости и нити, сферы). Равномерно заряженная бесконечная плоскость
- •Бесконечная равномерно заряженная нить
- •42**Циркуляция вектора напряженности электростатического поля.
- •43.Потенциал электростатического поля. Принцип суперпозиции потенциала.
- •44.****Напряженность как градиент потенциала. Эквипотенциальные поверхности.
- •45.Нахождение разности потенциалов по напряженности поля для плоскости и нити.
- •46.**Типы диэлектриков. Поляризация диэлектриков. Поляризованность Сегнетоэлектрики.
- •47. Условия на границе раздела двух диэлектрических сред.
- •48.Проводники в электростатическом поле.
- •49.Электрическая емкость уединенного проводника. Конденсаторы.
- •50.**Энергия системы зарядов, уединенного проводника, конденсатора. Энергия электростатического поля.
- •51. Электрический ток. Сила и плотность тока. Сторонние силы. Электродвижущая сила и напряжение.
- •52. *Закон Ома для однородного, неоднородного участков цепи и замкнутой цепи.. Сопротивление.
- •53. *Работа и мощность тока. Закон Джоуля- Ленца.
- •54. ***Правила Кирхгофа для разветвленных цепей.
- •57. Закон Ампера. Взаимодействие токов.
- •58. Магнитное поле движущегося заряда.
- •59. *Сила Лоренца. Движение заряженной частицы в магнитном поле.
- •60. **Эффект Холла.
- •62. ***Явление электромагнитной индукции и самоиндукции.***Закон Фарадея, ****правило Ленца. (Трофимова, стр. 222-223)
- •63. Вращение рамки в магнитном поле
- •64. Индуктивность контура. *Токи при замыкании и размыкании.
- •65. * Взаимная индукция. Трансформаторы.
- •66. Энергия магнитного поля.
- •67.*Магнитные моменты электронов и атомов.
- •69. Намагниченность. Магнитное поле в веществе.
- •70. Ферромагнетики и их свойства.
- •71. ***Уравнения Максвелла для электромагнитного поля в интегральной форме.(интегралы заполняются только внизу. Вверху нет ничего)
- •72. ****Электромагнитный колебательный контур.
- •73. **Переменный ток. Векторная диаграмма.
- •74. **Резонанс токов.
- •75. **Резонанс напряжений.
- •76. Мощность, выделяемая в цепи переменного тока.
69. Намагниченность. Магнитное поле в веществе.
Для количественного описания намагничивания магнетиков вводят векторную величину – намагниченность, определяемую магнитным моментом единицы объёма магнетика:
– магнитный момент
магнетика, представляющий собой векторную
сумму магнитных моментов отдельных
моментов.
До сих пор рассматривалось магнитное поле, которое создавалось проводниками с током или движущимися электрическими зарядами, находящимися в вакууме. Если же магнитное поле создается не в вакууме, а в какой-то другой среде, то магнитное поле изменяется.
Для объяснения намагничивания тел Ампер предположил, что в молекулах вещества циркулируют круговые токи. Каждый такой ток обладает магнитным моментом и создает в окружающем пространстве магнитное поле. В отсутствие внешнего магнитного поля молекулярные токи ориентированы хаотически, поэтому суммарный магнитный момент вещества равен нулю. В магнитном поле молекулярные токи ведут себя подобно рамке с током, то есть ориентируются так, чтобы магнитные моменты были преимущественно ориентированы вдоль магнитного поля, вследствие чего магнетик намагничивается.
Закон полного тока для магнитного поля в веществе(теорема о циркуляции вектора ) является обобщением закона полного тока для магнитного поля в вакууме:
где
и
-соответственно
алгебраические суммы макро и микро
токов, охватываемых произвольным
замкнутым контуром(на
верху контурного интеграла ничего не
пишется)
70. Ферромагнетики и их свойства.
Ферромагнетики – (слабомагнитные вещества) – вещества, обладающие спонтанной намагниченностью, т.е. они намагничены даже при отсутствии внешнего магнитного поля(железо, кобальт, никель, гадолиний, их сплавы и соединения).
Помимо способности сильно намагничиваться, они обладают и другими свойствами:
По мере
возрастания вектора напряжённости
,
намагниченность сначала растёт быстро,
затем медленнее и наконец, достигается,
так называемое, магнитное
насыщение
,
уже не зависящее от напряжённости поля.
Существенная
особенность ферромагнетиков – не только
большие значения магнитной проницаемости
,
но и её зависимость от вектора
напряжённости. Вначале
растёт с увеличением H,
затем, достигая
максимума, начинает уменьшаться ,
стремясь в случае сильных полей к 1.
Характерной особенностью ферромагнетиков является то, что зависимость J(H) определяется предысторией намагничивания ферромагнетика. Это явление магнитного гистерезиса. Если намагнитить ферромагнетик до насыщения(рис. Т.1), а затем уменьшать напряжённость H, намагничивающегося поля, то, как показывает опыт, уменьшение описывается кривой 1-2, лежащей выше кривой 1-0. При H=0, J отличается от нуля, т.е., наблюдается остаточное напряжение. При дальнейшем увеличении противоположного поля ферромагнетик перемагничивается (3-4) и при H= - Hнас достигается насыщение (4) Затем, ферромагнетик снова можно размагнитить (4-5-6) и вновь намагнитить.
71. ***Уравнения Максвелла для электромагнитного поля в интегральной форме.(интегралы заполняются только внизу. Вверху нет ничего)
Полная система уравнений Максвела:
Для стационарных полей (E=const, B=const) уравнения Максвелла примут вид: