
- •1) Материя, объекты исследования в физике, методы исследования. Закон.
- •3) Ускорение при криволинейном поступательном движении: нормальное, тангенциальное и полное.
- •4) Кинематика вращательного движения.
- •5) Связь характеристик кинематики поступательного движения с характеристиками кинематики вращательного движения.
- •6. Кинематика колебательного движения: смещение, скорость, ускорение.
- •7) Законы Ньютона. Границы применимости законов Ньютона.
- •8) Силы: вес, трение, сила упругости.
- •9) Закон сохранения импульса, проекции импульса**
- •10)Кинетическая и потенциальная энергии.
- •11)Полная механическая энергия и закон ее сохранения.** Применение законов сохранения к ударам.
- •12. Границы движения. Потенциальная яма, потенциальный барьер.
- •13. Момент инерции точки относительно оси, момент инерции тела относительно оси вращения. Теорема Штейнера.***
- •15) Момент силы относительно точки, относительно оси вращения.***
- •16) *Основной закон динамики вращательного движения.***
- •17) * Момент импульса. Закон сохранения момента импульса.***
- •18) Гравитационное поле Земли и его характеристики
- •19) Постулаты частной теории относительности Эйнштейна. Преобразования Лоренца и следствия из них.
- •1. Первый постулат - принцип относительности (по)
- •2. Второй постулат – о предельной скорости распространения физических сигналов:
- •20) Векторная диаграмма колебательного движения и ее применение при сложении одинаково направленных колебаний.( навряд ли правильно)
- •22) Затухающие колебания. Уравнение, коэффициент затухания, логарифмический декремент затухания.
- •23) Вынужденные колебания, резонанс
- •24) Термодинамическая система (тс), методы исследования, идеальный газ, газовые законы.
- •25) Термодинамические параметры, уравнение Менделеева- Клапейрона.
- •26) Внутренняя энергия тс, изменение внутренней энергии.
- •27) Работа при изменении объема.
- •28) Теплоемкость (удельная, молярная, при постоянном объеме, при постоянном давлении).
- •29) Первое начало термодинамики и его применение к изопроцессам.****
- •31)Энтропия. Второе начало термодинамики.
- •32. * Вывод основного уравнения молекулярно-кинетической теории газов***(убейтесь сразу, если попадётся на экзамене)(слямзено с википедии, так что, если что упустил, проверьте)
- •33. Максвелловское распределение молекул по скоростям. Наиболее вероятная скорость. Зш распределения энергии по степеням свободы.
- •34)Распределение Больцмана. Барометрическая формула.
- •35) Жидкость. Поверхностное натяжение.
- •36) Капиллярные явления. Давление Лапласа
- •37. Явления переноса.*(не уверен, что пункты 1,2 и 3 нужны, но это так, на всякий случай).
- •38.Электрический заряд. Дискретность заряда. Закон сохранения электрического заряда. Закон Кулона.
- •39.Электростатическое поле. Напряженность электростатического поля. Принцип суперпозиции электростатических полей. Поле диполя.
- •40.Поток вектора напряженности электростатического поля.**Теорема Остроградского-Гаусса для электростатического поля в вакууме.
- •41.***Применение теоремы о-г к расчету некоторых электростатических полей в вакууме (точечного заряда, бесконечных плоскости и нити, сферы). Равномерно заряженная бесконечная плоскость
- •Бесконечная равномерно заряженная нить
- •42**Циркуляция вектора напряженности электростатического поля.
- •43.Потенциал электростатического поля. Принцип суперпозиции потенциала.
- •44.****Напряженность как градиент потенциала. Эквипотенциальные поверхности.
- •45.Нахождение разности потенциалов по напряженности поля для плоскости и нити.
- •46.**Типы диэлектриков. Поляризация диэлектриков. Поляризованность Сегнетоэлектрики.
- •47. Условия на границе раздела двух диэлектрических сред.
- •48.Проводники в электростатическом поле.
- •49.Электрическая емкость уединенного проводника. Конденсаторы.
- •50.**Энергия системы зарядов, уединенного проводника, конденсатора. Энергия электростатического поля.
- •51. Электрический ток. Сила и плотность тока. Сторонние силы. Электродвижущая сила и напряжение.
- •52. *Закон Ома для однородного, неоднородного участков цепи и замкнутой цепи.. Сопротивление.
- •53. *Работа и мощность тока. Закон Джоуля- Ленца.
- •54. ***Правила Кирхгофа для разветвленных цепей.
- •57. Закон Ампера. Взаимодействие токов.
- •58. Магнитное поле движущегося заряда.
- •59. *Сила Лоренца. Движение заряженной частицы в магнитном поле.
- •60. **Эффект Холла.
- •62. ***Явление электромагнитной индукции и самоиндукции.***Закон Фарадея, ****правило Ленца. (Трофимова, стр. 222-223)
- •63. Вращение рамки в магнитном поле
- •64. Индуктивность контура. *Токи при замыкании и размыкании.
- •65. * Взаимная индукция. Трансформаторы.
- •66. Энергия магнитного поля.
- •67.*Магнитные моменты электронов и атомов.
- •69. Намагниченность. Магнитное поле в веществе.
- •70. Ферромагнетики и их свойства.
- •71. ***Уравнения Максвелла для электромагнитного поля в интегральной форме.(интегралы заполняются только внизу. Вверху нет ничего)
- •72. ****Электромагнитный колебательный контур.
- •73. **Переменный ток. Векторная диаграмма.
- •74. **Резонанс токов.
- •75. **Резонанс напряжений.
- •76. Мощность, выделяемая в цепи переменного тока.
47. Условия на границе раздела двух диэлектрических сред.
Исследуем связь между векторами Е и D на границе раздела двух однородных изотропных диэлектриков (у которых диэлектрические проницаемости равны ε1 и ε2) при отсутствии на границе свободных зарядов.
Рис.1
Проведем
вблизи границы раздела диэлектриков 1
и 2 небольшой замкнутый прямоугольный
контур ABCDA длины l,
с направлением ориентации, как показано
на рис. 1. По теореме о циркуляции
вектора Е,
применительно к данному
случаю
откуда
(знаки
интегралов по АВ и CD разные, поскольку
пути интегрирования противоположны, а
интегралы по участкам ВС и DA малы).
Поэтому
(1)
Заменив
проекции вектора Е проекциями
вектора D,
деленными на ε0ε,
получим
(2)
построим
прямой цилиндр ничтожно малой высоты
на границе раздела двух диэлектриков
(рис. 2); одно основание цилиндра находится
в первом диэлектрике, другое — во втором.
Основания ΔS настолько малы, что в
пределах каждого из них вектор D одинаков.
Согласно теореме Гаусса для
электростатического поля в
диэлектрике
(нормали n и n' к
основаниям цилиндра противоположно
направлены). Поэтому
(3)
Заменив
проекции вектора D проекциями
вектора Е,
умноженными на ε0ε,
получим
(4)
Значит,
при переходе через границу раздела двух
диэлектрических сред тангенциальная
составляющая вектора Е(Еτ)
и нормальная составляющая вектора D(Dn)
изменяются непрерывным образом (не
испытывают скачка), а нормальная
составляющая вектора Е(Еn)
и тангенциальная составляющая
вектора D(Dτ)
испытывают скачок.
Из
условий (1) — (4) для составляющих
векторов Е и D мы
видим, что линии этих векторов испытывают
излом (преломляются). Найдем как связаны
между углы α1 и
α2 (на
рис. 3 α1>α2).
Используя (1) и (4), Еτ2 =
Еτ1 и
ε2En2 =
ε1En1.
Разложим векторы E1 и E2 на
тангенциальные и нормальные составляющие
у границы раздела. Из рис. 3 мы видим,
что
Учитывая
записанные выше условия, найдем закон
преломления линий напряженности Е (а
значит, и линий смещения D)
Из
этой формулы можно сделать вывод, что,
входя в диэлектрик с большей диэлектрической
проницаемостью, линии Е и D удаляются
от нормали.
48.Проводники в электростатическом поле.
Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действовать электростатическое поле, в результате чего они начнут перемещаться. Перемещение зарядов(ток) продолжается до тех пор, пока не установится равновесное распределение зарядов, при котором электростатическое поле внутри проводника обращается в ноль.
Отсутствие поля внутри проводника означает, что потенциал во всех точках внутри проводника постоянен, т.е. пов-ть проводника – эквипотенциальна. Сл-но, что вектор напряжённости поля на внешней пов-ти проводника направлен по нормали к каждой точке его поверхности.
49.Электрическая емкость уединенного проводника. Конденсаторы.
Электроемкость уединенного проводника есть физическая величина численно равная величине заряда, который необходимо сообщить данному проводнику для увеличения его потенциала на единицу. В СИ единицей емкости является Фарад (Ф).
Конденсатор – устройство, небольшое относительно окружающих тел, способное накапливать значительные по величине заряды.
Конденсаторы бывают плоские и сферические.