Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Metodichka_po_ekonometrike_s_testami.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
17.37 Mб
Скачать

Контрольные вопросы к защите

  1. Что понимают под рядом динамики (временным рядом)?

  2. Дайте определение тренда.

  3. Перечислите основные виды трендов.

  4. Какова интерпретация параметров линейного тренда?

  5. Какова интерпретация параметров показательного тренда?

  6. Какие методы используются выявления тенденции временного ряда?

  7. Каковы условия применения метода аналитического сглаживания?

  8. Как моделируется тенденция временного ряда в случае структурных изменений?

  9. Как выбрать форму тренда?

  10. Нужна ли оценка достоверности параметров тренда?

  11. Как рассчитывается ошибка линейного прогноза?

Способ оценки результатов

п/п

Элементы выполнения работы и усвоения теоретического материала

Максимальный балл

1

Расчетная часть работы выполнена корректно и полностью

2

2

Сделаны подробные выводы, в которых отражены выявленные закономерности

1

3

Защита работы

1

4

Соблюдение сроков защиты

1

Итого

х

5

Лабораторная работа №10. Изучение взаимосвязей на основе временных рядов

Модульная единица 6.

Требования к содержанию, оформлению и порядку выполнения:

Теоретическая часть.

Изучение взаимосвязи экономических переменных по данным временных рядов осложнено тем, что в этих рядах может быть тенденция. Если в ряду динамики переменной у и в ряду динамики х есть компонента «Т», то в результате мы получим тесную связь между у и х. Однако из этого факта еще нельзя делать вывод о том, что изменение х есть причина изменения у, то есть что между этими изменениями есть причинно-следственная связь.

Чтобы выявить причинно-следственную зависимость между переменными, необходимо устранить ложную корреляцию между ними, вызванную наличием тенденции.

Существует несколько способов исключения тенденции в рядах динамики. Первый способ называется метод отклонений от тренда. Пусть имеется уt= Т + е и хt= Т + е. Проводится аналитическое выравнивание каждого ряда: и , где Ту и Тх – это оценки трендовых компонент. Затем определяется остаток в каждом наблюдении и

, так как остаточная компонента не содержит тенденции. Далее изучается зависимость между самими остатками еу=fх). Если между переменными есть связь, то она проявится в согласованном изменении остатков. Недостатком данного способа является то, что содержательная интерпретация параметров такой модели затруднительна. Однако модель может быть использована для прогнозов и, кроме того, коэффициент парной корреляции между остатками отразит связь переменных.

Второй способ преодоления тенденции в рядах динамики – это метод последовательных разностей. Если временной ряд содержит ярко выраженную линейную тенденцию, то для ее устранения можно заменить исходные уровни разностями первого порядка, то есть цепными абсолютными приростами: и . Далее прирост у рассматривается как функция прироста х: .

Третьим способом является включение в модель регрессии фактора времени: yt= a+b1x1+ b2 t. В данном случае коэффициенты чистой регрессии легко интерпретируются, имеют естественные единицы измерения. Коэффициент b1 покажет на сколько единиц изменится результат при единичном изменении фактора при условии существования неизменной тенденции; коэффициент b2 отразит влияние всех прочих факторов, формирующих тенденцию, кроме x1. Однако данный способ построения регрессионной модели требует большего объема наблюдений, так как в модели появляется еще один параметр.

Однако при моделировании временных рядов встречаются ситуации, когда остатки содержат тенденцию или цикличность. В этом случае остатки не являются независимыми, каждое последующее значение остатка зависит от предыдущего. Это явление получило название автокорреляция остатков.

Существуют два способа определения автокорреляции в остатках. Первый заключается в визуальном анализе графика зависимостей остатков от времени. Второй способ предполагает использование критерия Дарбина-Уотсона. Величину критерия (d) можно определить по одной из формул

либо d 2(1 – re1)

где re1 – коэффициент автокорреляции остатков первого порядка.

Если в остатках существует полная положительная автокорреляция, то re1=1 и d = 0. Если в остатках полная отрицательная автокорреляция, то

re1=-1 и d = 4. Если автокорреляция остатков отсутствует, то re1=0 и d = 2.

На практике используется следующий алгоритм проверки гипотезы об автокорреляции остатков:

  1. выдвигается нулевая гипотеза об отсутствии автокорреляции в остатках;

  2. 2 определяется фактическое значение критерия Дарбина – Уотсона (d);

  3. по специальным таблицам (приложение учебника по эконометрике) находят критические значения критерия dL и du , где п –число наблюдений, k- независимых переменных в модели, - уровень значимости;

  4. числовой промежуток всех возможных значений d разбивается на 5 отрезков

Есть положи-тельная автокорре-ляция остатков

Зона неопределенности

Автокорреля-ция остатков отсутствует

Зона неопределенности

Есть отрицательная автокорреляция остатков

0 d L d u 2 4- d u 4 - d L 4

5. если d - фактическое попадает в зону неопределенности, то предполагают существование автокорреляции в остатках.

В последнем случае исследовать причинно-следственные связи переменных по остаткам нельзя, получим ложную корреляцию.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]