
- •1.Переходные процессы в линейных электрических цепях. Законы коммутации.
- •2. Классический метод расчета переходных процессов в электрических цепях.
- •3. Операторный метод расчета переходных процессов в электрических цепях.
- •4. Частотный метод расчета переходных процессов в электрических цепях.
- •5. Метод расчета при помощи интеграла Дюамеля.
- •6. Метод переменных состояний.
- •7. Основы теории четырехполюсников и многополюсников. Классификация.
- •8. Основные уравнения передачи четырехполюсников.
- •9. Входные сопротивления четырехполюсников. Режим холостого хода и короткого замыкания.
- •11. Характеристические параметры четырехполюсников: постоянная передачи четырехполюсника, собственный коэффициент затухания и коэффициент фазы.
- •12.Характеристические параметры четырехполюсников: рабочее и вносимое коэффициенты затухания четырехполюсника, коэффициенты передачи.
- •13. Простейшие виды четырехполюсников. Амплитудно-частотная и фазочастотная характеристики четырехполюсников. (не уверена что все полностью)
- •14. Эквивалентные схемы четырехполюсников. Схемы замещения четырехполюсников.
- •15. Схемы соединения четырехполюсников. Основные условия. Уравнения передачи для сложных четырехполюсников.
- •16. Электрические фильтры. Исследование активного rc-фильтра.
- •3.Основные характеристики и параметры фильтров
- •17 Расчет lc- и arc- фильтров.
- •18. Цепи с распределенными параметрами. Типы линии передач.
- •19. Однородная линия при гармоническом внешнем воздействии. Телеграфные уравнения. Решение уравнений Гельмгольца.
- •20. Цепи с распределенными параметрами. Режим бегущих волн.
- •21. Цепи с распределенными параметрами. Режим стоячих волн.
- •22. Цепи с распределенными параметрами. Режим смешанных волн.
- •24. Передаточная функция цепи с ос, положительная и отрицательная ос, петлевое усиление.
- •25. Устойчивость линейных цепей с ос. Критерий Найквиста.
- •26. Автоколебательные цепи и генерирование гармонических колебаний
- •27. Определение автоколебательной системы. Основные принципы реализации высокочастотных автогенераторов.
- •28. Механизм возникновения колебаний lc-генератора. Стационарный режим автогенератора.
- •29. Баланс амплитуд. Баланс фаз. Модуляция частоты в автогенераторе.
- •30. Нелинейные электрические цепи. Классификация элементов.
- •31. Методы расчета нелинейных электрических цепей постоянного тока.
- •32. Статические и дифференциальные параметры нелинейных элементов
- •33.Параллельное и последовательное соединение двухполюсников.
- •34.Особенности колебаний в нелин. Электр. Резист. Цепях. Понятие о нелин. Искажениях.
26. Автоколебательные цепи и генерирование гармонических колебаний
Автоколебательными называются активные электрические цепи, в которых без посторонних воздействий самостоятельно возникают электрические колебания. Такие колебания называются автоколебаниями, а сами электрические цени, в которых возникают автоколебания, - автогенераторами
Если
контуру сообщить некоторое количество
энергии, то в нем возникнут свободные
колебания, По первому закону Кирхгофа
(ЗТК)
,
где
-
начальная амплитуда напряжения на
контуре, зависящая от введенной в
контур энергии;
-
частота собственных колебаний; q -
начальная фаза. В автогенераторах,
используемых для получения высокочастотных
гармонических колебаний, в качестве
усилительных элементов используется
транзисторы, электронные лампы, а в
качестве цепей нагрузки – колебательные
цепи с сосредоточенными или распределенными
параметрами.
Причиной возникновения колебаний в автогенераторе являются флуктуации (случайные возмущения) тока в элементах реальной, а также за счет внешних помех Очевидно, важным условием возникновения колебаний является то, что фаза напряжения uБЭ должна быть такой, при которой увеличение напряжения uК вызывает увеличение коллекторного тока iК и, тем самым, порождает новое увеличение uК. Данное условие и есть условие баланса фаз. Баланс фаз достигается правильным включением вторичной обмотки трансформатора. Обратная связь, при которой выполняется баланс фаз, является положительной ОС .Самовозбуждение автогенератора возможно только при наличии положительной ОС.
27. Определение автоколебательной системы. Основные принципы реализации высокочастотных автогенераторов.
Автоколебания — это незатухающие колебания в нелинейной диссипативной системе, вид и свойства которых определяются самой системой и не зависят от начальных условий (по крайней мере, в конечных пределах). В цепях, содержащих обратные связи, могут возникнуть изменяющиеся во времени электрические токи без воздействия на эти цепи внешних управляющих сигналов. Такие цепи называют автоколебательными системами, а колебания - автоколебаниями.
Типичная
структура автоколебательной системы
- это структура с обратной связью, в
которой часть выходного сигнала
возвращается на вход через цепь обратной
связи (на рис.1)
Рис.1
Для передачи сигналов электросвязи необходимо иметь генератор электрических колебаний высокой частоты- устройство, преобразующее энергию источника постоянного напряжения в энергию колебаний. Существуют генераторы с внешним возбуждением, в которых незатухающие колебания получают от внешнего источника, и генераторы с самовозбуждением (автогенераторы), для которых внешний источник не нужен. Колебания, получаемые в автогенераторах, называют автоколебаниями. Эти колебания могут быть гармоническими (синусоидальными) или релаксационными (несинусоидальными). Автогенераторы применяют не только в передающей, но и в приемной аппаратуре: в преобразователях частоты, демодуляторах и т.д. Независимо от назначения автогенераторов, они должны удовлетворять следующим общим требованиям: иметь достаточно высокое постоянство (стабильность) частоты колебаний и выходной мощности, а также возможно близкую с синусоидальной форму выходного напряжения. Для выполнения этих требований в схемах автогенераторов применяют ряд специальных мер.