
- •1. Предмет и метод инженерной графики.(методы-второй вопрос)
- •2. Центральное и параллельное проецирование.
- •3. Инвариантные свойства проецирования.
- •4. Точка. Проекция точки на плоскость проекции.
- •5. Натуральные величины отрезков прямых линий и углов наклона прямых линий к плоскостям проекций (способ прямоугольного треугольника)
- •6. Взаимное положение прямых линий.
- •7. Задание плоскости общего и частного положения на чертеже. Положение плоскости относительно плоскостей проекций.
- •8. Прямая и точка в плоскости.
- •9. Главные линии в плоскости.
- •10. Взаимное положение прямой и плоскости.
- •11. Построение прямой, параллельной плоскости; прямой, перпендикулярной плоскости. Построение взаимно параллельных плоскостей.
- •Алгоритм построения перпендикуляра к плоскости
- •12. Способы преобразования чертежа.
- •13. Способ замены плоскостей проекций.
- •14. Способ вращения вокруг оси, перпендикулярной к плоскости проекций.(вопрос 12)
- •15. Кривые поверхности.
- •16. Поверхности вращения.
- •17. Линейчатые и нелинейчатые поверхности.(вопрос 15)
- •18. Точки и линии на поверхности.
- •19. Пересечение поверхности и плоскости.
- •20. Пересечение поверхностей. Способ секущих плоскостей.
- •21. Развертки гранных поверхностей.
- •22. Построение развертки конуса и нанесение линии пересечения поверхностей на развертку.
- •Cтандартизированные аксонометрические проекции:
- •Прямоугольная (ортогональная) изометрическая проекция
- •Косоугольная фронтальная изометрическая проекция
- •Косоугольная горизонтальная изометрическая проекция
- •24. Аксонометрические проекции. Построение диметрической проекции.
- •Прямоугольная диметрическая проекция
- •Фронтальная диметрическая проекция Коэффициент искажения по оси y' равен 0,5, а по осям X' и z' 1. Допускается применять фронтальные диметрические проекции с углом наклона оси y' в 30° и 45°.
- •25. Форматы.
- •26. Масштабы.
- •27. Линии и надписи.
- •28. Изображения – виды, разрезы, сечения.
- •29. Виды.
- •30. Разрезы.
- •31. Сечения.
- •32. Нанесение размеров и предельных отклонений.
- •33. Классификация резьб. Основные параметры резьбы.
- •34. Условное изображение и обозначение основных типов резьбы на чертежах.
- •35. Виды изделий.
- •36. Виды и комплектность конструкторских документов.
- •37. Основные требования к чертежам.
- •38. Последовательность выполнения и чтения рабочих чертежей.
- •39. Эскизирование деталей.
- •40. Сборочный чертеж. Упрощения в изображениях сборочных единиц.
- •41. Последовательность выполнения и чтения чертежей сборочных единиц.
1. Предмет и метод инженерной графики.(методы-второй вопрос)
Инженерная графика - наука создания проекционных изображений.
Инженерная графика - это дисциплина, которая состоит из двух частей: начертательной геометрии и технического черчения.
Начертательная геометрия — раздел геометрии, в котором пространственные формы с их геометрическими закономерностями изучаются в виде их изображений на плоскости.
Основоположником начертательной геометрии, как науки, является французский ученый 18 века Гаспар Монж, систематизировавший все существующие знания в этой области и создавший труд «Geometry descriptive», изданный в 1799 г.. Г. Монж говорил, что «…нужно приучить пользоваться начертательной геометрией всех способных молодых людей, как богатых, для того, чтобы они были в состоянии употреблять свои капиталы с пользой – равно для себя и государства, так и для тех, у которых образование является единственным богатством, для того, чтобы они могли увеличить цену своего труда».
В России впервые этот предмет был введен в Московском высшем училище в 1810 году в Институте путей сообщения в Петербурге.
«Чертеж – это язык техники», - говорил Г. Монж, а проф. Курдюмов продолжал эту мысль: «А начертательная геометрия - это грамматика этого языка, т.к. учит нас правильно читать чужие и излагать наши собственные мысли, пользуясь в качестве слов только линиями и точками, как элементами всякого изображения».
Начертательная геометрия ставит перед собой 2 задачи:
1. Прямая ― научиться изображать на плоскости по оригиналу трехмерные геометрические объекты.
2. Обратная ― по заданному чертежу восстановить положение оригинала в пространстве.
Существуют центральный и параллельный методы проецирования.
2. Центральное и параллельное проецирование.
Метод центрального проецирования
Если дана некоторая плоскость П1, которую мы назовем плоскостью проекций, центр проекций S вне ее, а также точку А, то проведя через т. А из центра S проецирующий луч, мы получим проекцию т. А на пл. проекций П1. Если таких произвольно расположенных точек будет несколько, то в итоге мы получим некую коническую поверхность, поэтому этот метод называется еще и коническим. При таком способе проецирования нет размерного соответствия между изображением и моделью. (Рисунок 1)
Рисунок 1 Рисунок 2
Метод параллельного проецирования
В тех случаях, когда размерное соответствие обязательно, используют метод параллельного или цилиндрического проецирования, когда центр проецирования находится в бесконечности и проецирующие лучи параллельны между собой (рисунок 2). В качестве фиксированного базиса используют три взаимно-перпендикулярных плоскости проекций.
Первая из них называется фронтальной плоскостью и обозначается латинской буквой V. Она стационарна. А проекциям точек этой плоскости присваивают индекс этой же плоскости, например Аv, Ан, Аw.
Вторая пл. проекций, расположенная горизонтально, так и называется – горизонтальная и обозначается - Н. Для получения плоского чертежа ее поворачивают относительно оси охпереднюю полу вниз, заднюю вверх.
Третья плоскость расположена, как и первая вертикально, но перпендикулярна к фронтальной, и разворачивается против часов стрелки вокруг оси oz при совмещении плоскостей в единую и называется профильной - W.
Эти три плоскости взаимно перпендикулярны и делят пространство на 8 углов – октантов.
Пересекаясь между собой, три плоскости образуют линии пересечения – оси.
V ∩ H Þ ox (ось абсцисс); H ∩ W Þ oy (ось ординат); V ∩ W Þ oz (ось аппликат).
Ниже на чертеже представлена модель пространства и рядом изображение ее на плоскости.
Рисунок 3 Рисунок 4
При этом следует помнить, что проецирующие лучи параллельны между собой и перпендикулярны к плоскостям проекций.
При проецировании мы будем использовать такие геометрические образы как точка, прямая, плоскость, объемные тела.