
- •Общие методические указания
- •Консультации
- •Литература
- •1. Элементы линейной алгебры
- •Решение типового примера
- •Задачи контрольной работы
- •2. Элементы векторной алгебры на плоскости и в пространстве
- •2.1.Элементы векторной алгебры на плоскости Программные вопросы
- •Решение типового примера
- •Задачи контрольной работы
- •2.2.Элементы векторной алгебры в пространстве Решение типового примера
- •Задачи контрольной работы
- •3 .Элементы аналитической геометрии на плоскости
- •Решение типового примера
- •Задачи контрольной работы
- •Решение типового примера
- •4.Пределы последовательностей и функций. Программные вопросы
- •Решение типового примера
- •Задачи контрольной работы
- •Задачи контрольной работы
- •Задачи контрольной работы
- •Задачи контрольной работы
- •Производные Программные вопросы
- •Решение типового примера
- •Задачи контрольной работы
- •6. Исследование функций Программные вопросы
- •Решение типового примера
- •Задачи контрольной работы
- •Решение типового примера
- •Задачи контрольной работы
- •Комплексные числа. Программные вопросы
- •Решение типового примера
- •Задачи контрольной работы
- •Определенный интеграл.
- •Геометрические приложения определенного интеграла
- •Задачи контрольной работы
- •Задачи контрольной работы
- •Программные вопросы
- •Решение типового примера
- •Задачи контрольной работы
- •Градиент Программные вопросы
- •Решение типового примера
- •Задачи контрольной работы
- •Экстремум функции нескольких переменных Программные вопросы
- •Решение типового примера
- •Задачи контрольной работы
- •10. Обыкновенные дифференциальные уравнения. Программные вопросы.
- •Решение типовых примеров.
- •Дифференциальные уравнения первого порядка. Уравнения с разделяющимися переменными.
- •Однородные уравнения.
- •Линейные дифференциальные уравнения первого порядка.
- •Дифференциальные уравнения второго порядка. Дифференциальные уравнения, допускающие понижение порядка.
- •Уравнение второго порядка, не содержащее искомой функции
- •Уравнения второго порядка, не содержащие независимой переменной
- •Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- •Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- •Задачи контрольной работы
- •Числовые и функциональныеряды Программные вопросы.
- •Постановка задачи.
- •План решения задачи.
- •Постановка задач.
- •План решения задач.
- •Постановка задачи 4.
- •План решения задачи 4.
- •Постановка задачи 5.
- •План решения задачи 5.
- •Постановка задачи 6.
- •План решения задачи 6.
- •Постановка задачи 7.
- •План решения задачи 7.
- •1. Исследуем сходимость ряда, составленного из модулей, , используя теоремы сравнения и признаки сходимости для рядов с положительными членами.
- •Постановка задачи 8.
- •План решения задачи 8.
- •Постановка задач 9-11.
- •План решения задач 9-11.
- •Задачи контрольной работы
- •12.2. Теоремы сложения и умножения вероятностей Программные вопросы
- •Решение типового примера
- •Задачи контрольной работы
- •12.3. Формула полной вероятности. Формулы Байеса. Программные вопросы
- •Решение типового примера
- •Задачи контрольной работы
- •12.4. Повторные независимые испытания Программные вопросы
- •Решение типового примера
- •Задачи контрольной работы
- •12.5. Дискретная случайная величина Программные вопросы
- •Решение типового примера
- •Задачи контрольной работы
- •12.6. Непрерывная случайная величина Программные вопросы
- •Решение типового примера
- •Задачи контрольной работы
- •12.6. Законы распределения непрерывной случайной величины Программные вопросы
- •Решение типового примера
- •Задачи контрольной работы
- •13. Математичемкая статистика
- •13.1. Математическая статистика Программные вопросы
- •Решение типового примера
- •Требуется для признака х:
- •Распределение частот денежных затрат на животноводство
- •5) Найдём точечные и интервальные оценки генеральной средней и генерального среднего квадратического отклонения.
- •Тогда из неравенства имеем:
- •Задачи контрольной работы в задачах 13.1-13.20 даны выборки из некоторых генеральных совокупностей. Требуется для рассматриваемого признака
- •Задачи контрольной работы
- •Значения функции
- •Приложение 2 Значения функции
- •Приложение 3 Значения функции Пуассона
- •Приложение 4 Критические точки распределения 2
- •Приложение 5 Значения tp(p, n)
- •Приложение 6
Приложение 5 Значения tp(p, n)
n |
P |
n |
P |
||||
0,95 |
0,99 |
0,999 |
0,95 |
0,99 |
0,999 |
||
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
2,78 2,57 2,45 2,37 2,31 2,26 2,23 2,20 2,18 2,16 2,15 2,13 2,12 2,11 2,10 |
4,60 4,03 3,71 3,50 3,36 3,25 3,17 3,11 3,06 3,01 2,98 2,95 2,92 2,90 2,88 |
8,61 6,86 5,96 5,41 5,04 4,78 4,59 4,44 4,32 4,22 4,14 4,07 4,02 3,97 3,92 |
20 25 30 35 40 45 50 60 70 80 90 100 120 |
2,093 2,064 2,045 2,032 2,023 2,016 2,009 2,001 1,996 1,991 1,987 1,984 1,980 1,960 |
2,861 2,797 2,756 2,720 2,708 2,692 2,679 2,662 2,649 2,640 2,633 2,627 2,617 2,576 |
3,883 3,745 3,652 3,600 3,558 3,527 3,502 3,464 3,439 3,418 3,403 3,392 3,374 3,291 |
Приложение 6
Значения q = q(p, n)
n |
P |
n |
P |
||||
0,95 |
0,99 |
0,999 |
0,95 |
0,99 |
0,999 |
||
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
1,37 1,09 0,92 0,80 0,71 0,65 0,59 0,55 0,52 0,48 0,46 0,44 0,42 0,40 0,39 |
2,67 2,01 1,62 1,38 1,20 1,08 0,98 0,90 0,83 0,78 0,73 0,70 0,66 0,63 0,60 |
5,64 3,88 2,98 2,42 2,06 1,80 1,60 1,45 1,33 1,23 1,15 1,07 1,01 0,96 0,92 |
20 25 30 35 40 45 50 60 70 80 90 100 150 200 250 |
0,37 0,32 0,28 0,26 0,24 0,22 0,21 0,188 0,174 0,161 0,151 0,143 0,115 0,099 0,089 |
0,58 0,49 0,43 0,38 0,35 0,32 0,30 0,269 0,245 0,226 0,211 0,198 0,160 0,136 0,120 |
0,88 0,73 0,63 0,56 0,50 0,46 0,43 0,38 0,34 0,31 0,29 0,27 0,211 0,185 0,162 |