Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Синтез белка.doc
Скачиваний:
35
Добавлен:
30.05.2014
Размер:
211.46 Кб
Скачать

Глава I реализация генетической информации. Генетический код

В первой четверти XX в. было показано, что элементарные наследуемые признаки обусловлены материальными единицами наследственности — генами, локализованными в хромосомах, где они располагаются последовательно друг за другом в линейном порядке. На этой основе Т. X. Морганом была разработана хромо­сомная теория наследственности, за что он получил в 1933 г. Нобе­левскую премию по физиологии и медицине «за открытия, свя­занные с ролью хромосом в наследственности».

Ученые пытались определить и «продукты» деятельности генов, т. е. те молекулы, которые синтезируются в клетках под их контролем. В работах Эфрусси, Бидла и Татума накануне второй мировой войны была выдвинута идея о том, что гены продуцируют белки, но для этого ген должен хранить инфор­мацию для синтеза определенного белка (фермента). Сложный механизм реализации информации, заключенной в ДНК, и ее перевода в форму белка был раскрыт лишь в 60-е годы прош­лого века.

ГЕНЕТИЧЕСКИЙ КОД.Представление о том, что в гене закодирована информация о первичной структуре белка, было изложено Ф. Криком в его ги­потезе последовательности, согласно которой последовательность структурных элементов гена определяет последовательность амино­кислотных остатков в синтезируемой полипептидной цепи. Автор гипотезы предполагал, что код, скорее всего триплетен, что коди­рующая единица представлена тремя парами оснований ДНК, рас­положенными в определенной последовательности. Действительно, четыре пары оснований ДНК: А—Т, Т—А, Г—Ц, Ц—Г — могут за­кодировать лишь 4 аминокислоты, если допустить, что каждая пара соответствует одной аминокислоте. Известно, что белки со­стоят из 20 основных аминокислот. Если предположить, что каж­дой аминокислоте соответствуют две пары оснований, то мож­но закодировать 16 аминокислот (42). Этого также недостаточно. При триплетности же кода из четырех пар оснований можно со­ставить 64 кодона (43), и этого более чем достаточно для кодиро­вания 20 аминокислот. Экспериментальные доказательства того, что генетический код триплетен, были опубликованы в 1961 г. (Ф. Крик и др.). В этом же году на V Международном биохими­ческом конгрессе в Москве М. Ниренберг и Дж. Маттей сообщили о расшифровке первого кодона (УУУ — кодона для фенилаланина) и, что ещё более важно, предложили метод определения соста­ва кодонов в бесклеточной системе белкового синтеза.

Сразу возникли два вопроса: является ли код перекрывающим­ся и вырожден ли код?

Если бы кодоны перекрывались, то замена одной пары основа­ний приводила бы к замене сразу двух или трех аминокислот в синтезируемом белке. В действительности этого не происходит, и генетический код считают неперекрывающимся.

Код является вырожденным, так как почти каждая аминокисло­та связана с более чем одним кодоном, которые определяют их расстановку в первичной структуре синтезируемой полипептид­ной цепи. Только две аминокислоты — метионин и триптофан — связаны с единичными кодонами — АУГ и УГГ соответственно. Расстановку каждой из трех аминокислот — аргинина, лейцина и серина — в первичной структуре полипептидной цепи определяют шесть кодонов и т. д. (см. табл. 3.2).

К числу особенностей генетического кода относится также его универсальность (он в основном одинаков для всех живых организ­мов). Однако обнаружены и исключения из этого правила. В 1981 г. было завершено определение полной нуклеотидной последователь­ности митохондриальной ДНК человека, содержащей 16 569 нуклеотидных пар. Полученные результаты свидетельствуют о том, что митохондриальные геномы высших и низших эукариот, коди­рующие примерно один и тот же набор функций, характеризуютсяразличиями в смысловом значении некоторых кодонов, правилах антикодон-кодонового узнавания и общей структурной организа­ции. Так, оказалось, что в отличие от обычного универсального кода кодон АУА вместо изолейцина кодирует метионин, а трипле­ты АГА и АГГ являются не аргининовыми кодонами, а сигналами терминации. трансляции; триптофан кодируется как триплетом УГГ, так и триплетом УГА, который обычно выполняет функцию терминаторного кодона.

В генетическом коде разные кодоны одной аминокислоты, т. е. кодоны-синонимы, почти всегда находятся в одном и том же квадрате и отличаются друг от друга по последнему из трех нуклеотиду (исключение составляют лишь кодоны аргинина, серена и лейцина, имеющих по шесть кодонов, которые не могут размес­титься в одном квадрате, где помещаются всего четыре кодона). Генетический код имеет линейный порядок считывания и характеризуется колинеарностью , т. е. совпадением порядка расположения кодонов в мРНК с порядком расположения аминокислот синтезирующейся полдипептидной цепи.

СИНТЕЗ БЕЛКА В КЛЕТКЕ. Воспроизведение и действие генов связаны с матричными процессами: синтезом макромолекул— ДНК, РНК, белков. Выше уже рассматривалась репликация как процесс, обеспечивающий воспроизведение генетической информации. Современная теория гена— достижение молекулярной генетики — всецело опирается на успехи биохимии в изучении матричных процессов. И напротив, метод генетического анализа вносит существенный вклад в изучение матричных процессов, которые сами находятся под ге­нетическим контролем. Рассмотрим действие гена, обеспечивающего транскрипцию, или синтез РНК, и трансляцию, или синтез белка.

Транскрипция ДНК, Это перенос генетической информации закодированной в последовательности пар нуклеотидов, с двуце­почечной молекулы ДНК на одноцепочечную молекулу РНК. При этом матрицей для синтеза РНК служит только одна цепь ДНК, называемая смысловой.

В транскрипции, как и в других матричных процессах, различают три стадии: инициацию, элонгацию и терминацию. Фермент, осуществляющий этот процесс, называют ДНК-зависимой РНК-полимеразой или просто РНК~полимеразой; при этом полимеризация полирибонуклеотида (РНК) происходит в направлении от 5'- к З'-концу растущей цепи.

Синтез ферментов и других белков, необходимых для жизнедеятельности и развития организмов, происходит в основном на первой стадии интерфазы, до начала репликации ДНК.

В результате транскрипции наследственная информация, записанная в ДНК гена, точно транскрибируется (переписывается) в нуклеотидную последовательность мрак. Синтез мРНК начинается с участка инициации транскрипции, называемого промото­ром. Промотор расположен перед геном и включает в себя около 80 пар нуклеотидов (у вирусов и бактерий этот участок соответ­ствует примерно одному витку спирали ДНК и включает около 10 пар нуклеотидов). В нуклеотидных последовательностях промоторов часто встречаются пары AT, поэтому их называют также ТАТА-последовательностями.

Транскрипция осуществляется с помощью ферментов РНК-полимераз. У эукариот известны три типа РНК-полимераз: I — от­ветственен за синтез рРНК, II — за синтез мРНК; III —за синтез тРНК и низкомолекулярной рРНК — 5S РНК.

РНК-полимераза прочно связывается с промотором и разъеди­няет нуклеотиды комплементарных цепей. Затем этот фермент начинает двигаться вдоль гена (молекулы ДНК) и по мере разъе­динения цепей ведет на одной из них (смысловой) синтез мРНК, присоединяя согласно принципу комплементарно аденин к тимину, урацил к аденину, гуанин к цитозину и цитозин к гуани­ну. Те участки ДНК, на которых полимераза образовала мРНК, вновь соединяются, а синтезируемая молекула мРНК постепенно отделяется от ДНК. Окончание синтеза мРНК определя-ется участком остановки транскрипции -— терминатором. Нуклеотидные последовательности промотора и терминатора узнаются специальными белками, регулирующими активность РНК-полимеразы.

Перед выходом из ядра к начальной части мРНК (5'-концу) присоединяется остаток метилированного гуанина, называемый «колпачком», а к концу мРНК (З'- концу) - около 200 остатков адениловой кислоты. В таком виде зрелая мРНК проходит через ядерную мембрану в цитоплазму к рибосоме и соединяется с ней. Полагают, что у эукариот «колпачок» мРНК участвует в связыва­нии ее с малой субъединицей рибосомы.

Трансляция мРНК. Это синтез белка на рибосомах, направляе­мый матрицей мРНК. При этом информация переводится с четы­рехбуквенного алфавита нуклеиновых кислот на двадцатибуквенный алфавит аминокислотных последовательностей полипептид­ных цепей.

В этом процессе различают три стадии.

Активация свободных аминокислот — обра­зование аминоациладенилатов в результате взаимодействия амино­кислот с АТФ под контролем ферментов, специфичных для каж­дой аминокислоты. Эти ферменты — аминоацилтРНКсинтета-зы — участвуют и в следующей стадии.

Аминоацилирование тРНК - присоединение амино­кислотных остатков к тРНК путем взаимодействия тРНК и комп­лекса аминоацил-тРНК-синтетазы с аминоациладенилатами. При этом каждый аминокислотный остаток присоединяется к своему специфическому классу тРНК.

Собственно трансляция, или полимеризация ами­нокислотных остатков с образованием пептидных связей.

Таким образом, при трансляции последовательность расположе­ния нуклеотидов в мРНК переводится в соответствующую, строго упорядоченную последовательность расположения аминокислот в молекуле синтезируемого белка. В процессе трансляции участвуют мРНК, рибосомы, тРНК, аминоацил-тРНК-синтетазы.

Сигналом инициации трансляции у про- и эукариот служит кодон АУТ, если он расположен в начале мРНК. В этом случае его «узнает» специализированная инициирующая формилметиониновая (у бак­терий) или метиониновая (у эукариот) тРНК. В остальных случаях кодон АУГ «читается» как метиониновый. Сигна­лом инициации может также служить кодон ГУГ. Это взаимо­действие происходит на рибосоме в ее аминоацильном центре (А-центре), располагающемся преимущественно на малой субъеди­нице рибосомы.

Взаимодействие кодона АУГ информационной РНК, малой субъединицы рибосомы и формилметионил-тРНК образует ком­плекс инициации. Суть этого взаимодействия заключается в том, что к кодону АУГ на мРНК присоединяется своим антикодом.

УАЦ тРНК, захватившая и несущая молекулу аминокислоты метионина (у бактерий инициаторной является тРНК, которая пе­реносит формилметионин). Затем к этому комплексу, состо­ящему из малой субъединицы рибосомы (30S*), мРНК и тРНК, присоединяется большая субъединица рибосомы (50S*). В ре­зультате образуется полностью собранная рибосома, включаю­щая одну молекулу мРНК и инициаторную тРНК с амино­кислотой. В рибосоме имеются аминоацилъный и пептидилъный центры.

Первая аминокислота (метионин) сначала попадает в аминоацильный центр. В процессе присоединения большей субъеди­ницы рибосомы мРНК продвигается на один кодон, тРНК из аминоацильного центра перемещается в пептидильный центр. В аминоацильный центр поступает следующий кодон мРНК, ко­торый может соединиться с антикодоном следующей аминоацил-тРНК. С этого момента начинается вторая стадия трансля­ции — элонгация, в ходе которой многократно повторяется цикл присоединения молекул аминокислот к растущей полипептид­ной цепи. Так, в аминоацильный центр рибосомы поступает в соответствии с кодоном информационной РНК вторая молекула тРНК, несущая очередную аминокислоту. Эта тРНК своим анти­кодоном соединяется с комплементарным кодоном мРНК. Сразу же при помощи пептицилтрансферазы предшествующая амино­кислота (метионин) соединяется своей карбоксильной группой (СООН) с аминогруппой (NH2) вновь доставленной аминокис­лоты. Между ними образуется пептидная связь. При этом выделяется молекула воды:

В результате мРНК, доставившая метионин, освобождается, а в аминоацильном центре к тРНК оказывается присоединенным уже дипептид. Для дальнейшего осуществления процесса элон­гации должен быть освобожден аминоацильный центр, что и происходит.

В результате процесса трансляции комплекс дипептидил-тРНК продвигается из аминоацильного центра в пептидильный. Это происходит благодаря перемещению рибосомы на один кодон при участии фермента транслоказы и белкового фактора элон­гации. Освободившаяся тРНК и кодон мРНК, который был связан с ней, выходят из рибосомы. Следующая тРНК доставля­ет в освободившийся аминоацильный центр аминокислоту в со­ответствии с поступившим туда кодоном. Эта аминокислота при помощи пептидной связи соединяется с предыдущей. При этом рибосома продвигается еще на один кодон, и процесс повторяется до тех пор, пока в аминоацильный центр не посту­пит один из трех терминирующих кодонов (нонсенс-кодонов), т. е. УАА, УАГ или У ГА.

После поступления в аминоацильный центр рибосомы терми­нирующего кодона наступает третий этап синтеза полипептида — терминация. Она начинается с присоединения к терминирующему кодону мРНК одного из белковых факторов терминации, что при­водит к блокированию дальнейшей элонгации цепи. Терминация синтеза приводит к освобождению синтезированной полипептид­ной цепи и субъединиц рибосомы, которые после освобождения диссоциируют и могут принять участие в синтезе следующей полипептидной цепи,

Весь процесс трансляции сопровождается расщеплением моле­кул ГТФ (гуанозинтрифосфата), причем необходимо участие до­полнительных белковых факторов, специфичных для процессов инициации (факторов инициации), элонгации (факторов элонга­ции) и терминации (факторов терминации). Эти белки не являют­ся интегральной частью рибосомы, а присоединяются к ней на определенных этапах трансляции. В общих чертах процесс транс­ляции одинаков у всех организмов.

Процесс синтеза белка очень сложен. Кроме упомянутых, его протекание обеспечивают много других ферментов. У E.coli от­крыто около 100 генов, которые контролирую синтез полипеп­тидов и образование разных элементов, входящих в аппарат трансляции. Поскольку молекула мРНК оказывается достаточно длинной, к ней может присоединиться несколько рибосом. В каж­дой из рибосом, связанных с одной молекулой мРНК, идет синтез одних и тех же молекул белка, однако этот синтез находится на разных стадиях, что определяется тем, какая из них раньше и ка­кая позже вступила в связь с молекулой мРНК. По мере того как рибосома продвигается вдоль мРНК (от ее 5'- к З'- концу), инициирующий участок цепи высвобождается, на нем происходитсборка следующего активного рибосомного комплекса, и на той же матрице снова начинается синтез полипептида. При взаимо­действии нескольких активных рибосом с одной молекулой мРНК образуется полирибосома, или полисома.

Образующиеся при синтезе белка полипептидные цепи претер­певают посттрансляционные преобразования и в дальнейшем вы­полняют свои специфические функции. Первичная структура по­липептида определяется последовательностью расположения в нем аминокислот. Полипептидные цепи самопроизвольно формируют определенную вторичную структуру, которая определяется приро­дой боковых групп аминокислотных остатков (α-спираль, склад­чатый β- слой, случайный клубок). Все эти и другие структурные особенности определяют некоторую фиксированную трехмерную конфигурацию, которую называют третичной (или пространст­венной) структурой полипептида, отражающей по сути дела способ укладки данной полипептидной цепи в трехмерном пространстве.

Белки могут состоять из одной или нескольких полипептидных цепей. Во втором случае их называют олигомерными белками. Для них характерна определенная четвертичная структура. Под этим термином подразумевают общую конфигурацию белка, возникшую при ассоциации всех входящих в ее состав полипептидных цепей. В частности, структурная модель человеческого гемоглобина вклю­чает в себя две α-цепи и две β-цепи, которые связаны между собой и образуют четвертичную белковую структуру.

Точность полипептидного синтеза зависит от правильности образования системы водородных связей между кодонами и антикодонами. До замыкания очередной пептидной связи с помощью рибосом осуществляется проверка правильности образования пары кодон — антикодон. Прямое свидетельство в пользу активной ро­ли рибосом в контроле комплементарности кодон-антикодоновой связи — обнаружение мутаций, изменяющих рибосомные белки и таким образом влияющих на точность трансляции. Вопрос о мута­циях будет рассмотрен в главе 6.

СПЕЦИАЛИЗИРОВАННЫЙ ПЕРЕНОС ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ. РЕПЛИКАЦИЯ РНК.Известны три вида процессов, в рамках которых осуществляет­ся специализированный перенос генетической информации. Один из них — перенос информации от РНК к РНК — удается зафикси­ровать только в клетках, зараженных вирусами, генетический ма­териал которых представлен РНК. Это, в частности, вирус табач­ной мозаики и многие другие вирусы растений, РНК-содержащие бактериофаги и некоторые другие вирусы животных, такие, как полиовирусы. Эти вирусные геномные РНК, одноцепочечные или двухцепочечные, несут гены, кодирующие специфические РНК-репликазы, которые по РНК-матрице могут синтезировать комп­лементарные молекулы РНК. Они в свою очередь могут служить матрицами для синтеза аналогичным способом копий родитель­ских цепей РНК. Перенос генетической информации от РНК к РНК также основан на принципе комплементарное оснований в ро­дительской и дочерней цепях РНК.

Обратная транскрипция. Данный вид специализированного пе­реноса генетической информации не от ДНК к РНК, а наоборот от РНК к ДНК, обнаружен в клетках животных, инфицированных вирусами определенного типа. Это особый тип РНК-содержащих вирусов, называемых ретровирусами. В настоящее время установ­лено, что еще один тип вирусов — ДНК-содержащий вирус гепа­тита В в своем развитии также использует перенос информации от РНК к ДНК.

Ретровирусы содержат молекулы одноцепочечной РНК, при этом каждая вирусная частица имеет две копии РНК-генома, т. е. вирусы этого типа являются единственной известной разно­видностью диплоидных вирусов. Впервые они были обнаружены по способности вызывать образование опухолей у животных. Пер­вый вирус этого типа был описан в 1911г. Пептоном Раусом, об­наружившим инфекционную саркому у кур.

После проникновения РНК ретровируса в клетку хозяина ви­русный геном подвергается обратной транскрипции. При этом сна­чала образуется дуплекс РНК— ДНК, а затем двухцепочечная ДНК. Эти этапы предшествуют экспрессии вирусных генов на уровне белков и образованию РНК-геномов.

Фермент, катализирующий комплементарное копирование РНК с образованием ДНК, называется обратной транскриптазой. Он содержится в ретровирусных частицах (вирионах) и активизирует­ся после попадания вируса в клетку и разрушения его липидно-гликопротеиновой оболочки.

Появляется все больше данных о том, что обратная транскрип­ция происходит и в самых разных эукариотических клетках, а об­ратная транскриптаза играет важную роль в процессах перестрой­ки генома.

Обратные транскриптазы ретровирусов — это по существу ДНК-полимеразы, которые могут использовать in vitro в качестве матри­цы ДНК. Однако гораздо эффективнее они работают на РНК. Как и все ДНК-полимеразы, обратные транскриптазы не способны инициировать синтез новых цепей ДНК. Но если синтез уже инициирован с помощью праймерной РНК или 3'-концевого уча­стка ДНК, то фермент эффективно осуществляет синтез, ис­пользуя цепь ДНК как матрицу.

Ретровирусы оказались очень полезным инструментом совре­менных генно-инженерных исследований. Они служат источни­ком для получения практически чистой обратной транскриптазы — фермента, играющего важнейшую роль в многочисленных работах, основанных на клонировании эукариотических генов. Так, очищенную индивидуальную мРНК, кодирующую интересующий исследователя белок, как правило, выделить гораздо легче, чем фрагмент ДНК генома, кодирующий этот белок. Затем с помощью обратной транскриптазы можно получить ДНК-копию этой мРНК и встроить ее в подходящую плазмиду для клонирования и выра­ботки значительных количеств нужной ДНК.

Трансляция ДНК. Третий вид специализированного переноса генетической информации от ДНК непосредственно к белку уда­лось наблюдать только в лаборатории in vitro. В этих условиях не­которые антибиотики, в частности стрептомицин и неомицин, взаимодействующие с рибосомами, могут так изменять их свой­ства, что рибосомы начинают использовать в качестве матрицы вместо мРНК одноцепочечную ДНК, с которой последователь­ность оснований непосредственно переводится в аминокислотную последовательность синтезируемого полипептида.