- •1. Автоматические воздушные выключатели
- •2. Автоматические выключатели. Условия выбора ниже 1000в.
- •Условия выбора автоматических выключателей:
- •Критерии выбора предохранителя:
- •5.Условия выбора автоматических выключателей
- •6. Выбор вводного выключателя цеховой трансформаторной подстанции.
- •7. Построение карты селективности аппаратов защиты
- •8. Сущность выбора сечения проводника по условиям нагрева и согласования с аппаратами защиты.
- •9.Какие сети, согласно пуэ подлежат обязательной защите от перегрузки
- •10. Конструктивное выполнение тп и рп
- •13. Выбор числа и мощности цеховых тп.
- •14. Назначение и особенности электросетей внутризаводского электроснабжения выше 1000в
- •15.Понятие «расчетная электрическая нагрузка»
- •16. Определение расчетных нагрузок группы электроприемников
- •Методы определения расчетных электрических нагрузок
- •17.Метод упорядоченных диаграмм
- •Эффективное число электроприемников.
- •Определение пикового тока для группы эп.
- •Вспомогательные методы определения расчетных нагрузок группы эп
- •Коэффициент разновременности максимумов нагрузок.
- •Графики нагрузок пром.Предприятий.
- •Коэффициенты, характеризующие графики нагрузок
- •25.Определение расчетной нагрузки однофазных эп
- •27. Определение расчетной осветительной нагрузки
- •28. Энергосбережение в системах эл.Освещения
- •Экономия ээ в оу:
- •29. Вопросы экономии ээ на пп.
- •30. Потери мощности и энергии в отдельных элементах системы эл.Снабжения
- •31.Как сказываются на работе электроприемников изменения напряжения
- •32. Выбор сечения проводников по наибольшему току нагрузки из условия нагрева Выбор сечения проводов, кабелей и шин цеховых сетей по нагреву
- •33.Выбор сечения проводников по экономической плотности тока
- •35. Выбор сечения проводников по потере напряжения.
- •37. Виды компенисирующих устройств. Их достоинства и недостатки
- •38. Размещение компенсирующих устройств в электрических сетях
- •39. Определение мощности компенсирующих устройств
- •40. Экономическое значение реактивной мощности
- •41 Что такое перекомпенсация?
- •42 Основные потребители реактивной мощности. Мероприятия по уменьшению потребления реактивной мощности. Почему батареи конденсаторов включают в треугольник
- •43 Естественная и искусственная компенсация реактивной мощности
- •44. Категории надежности эп
- •45. Основное электрооборудование внутрицеховых сетей
- •Кабельные линии в сетях напряжением до 1 кВ
- •Электропроводки.
- •Предохранители
- •Автоматические воздушные выключатели
- •48. Учет потребления эл. Энергии на промышленных предприятиях. Договор на использование эл. Энергией. Тарифы на эл. Эн.
- •Тарифы на эл энергию.
- •49. Основные положения методики т-э расчетов
- •50. Действующая величина тока короткого замыкания
- •51. Особенности расчетов кз до 1000в
- •52. Особенности расчетов кз выше 1000в
- •Порядок расчета:
- •53.Как проверяется сечение кабеля на термическую устойчивость к токам кз.
- •54. Построение эпюры отклонений напряжения для разничных режимов. Отклонение напряжения:
- •4 Условия выбора плавких предохранителей
39. Определение мощности компенсирующих устройств
Рис. 11-3. Векторная диаграмма компенсации мощности.
Определим, какова должна быть мощность компенсирующего устройства электроустановки потребителя электрической энергии (т. е. одного или группы приемников электрической энергии предприятия), имеющего нагрузку, равную Р + jQ, чтобы естественный коэффициент мощности cosj 1.был повышен, например, в часы максимальных нагрузок до значения, равного cosj .
На рис. 11-3 изображена векторная диаграмма компенсации мощности. До компенсации мощность изображается треугольником ОАВ, где вектор 0В = Р обозначает заданную активную мощность потребителя, а вектор АВ = Q соответствует реактивной мощности потребителя. Задача состоит в том, чтобы найти такую мощность компенсирующего устройства Qк == АА', чтобы после его включения фазовый сдвиг уменьшился с величины j 1 до заданной величины j 2.
Потерями активной мощности в компенсирующем устройстве пренебрегаем. Из диаграммы рис. 11-3 получаем:
Исключая из этих выражений величину Q/P, получаем:
Отсюда
Такова формула мощности компенсирующего устройства для любого значения Р и j 1, необходимой для доведения мгновенного коэффициента мощности до нормированной величины. Так, ПУЭ 1965 г. в качестве нормированной величины рекомендовало средневзвешенное значение не ниже 0,52—0,95.
С 1974 г. основными исходными данными для определения мощности компенсирующих устройств QК в распределительных сетях устанавливаются предельные величины реактивной мощности системы Qc, которые по техническим условиям могут быть переданы потребителю от энергосистемы в режиме наибольших активных нагрузок.
При реактивной нагрузке потребителя QМ в часы максимума мощность компенсирующего устройства определяется:
40. Экономическое значение реактивной мощности
41 Что такое перекомпенсация?
Перекомпенсация- это избыточная реактивная мощность, вырабатываемая компенсирующей установкой в периоды понижения нагрузок (ночью, в обеденные перерывы, в нерабочие и праздничные дни и т.п.) и передаваемая в сеть энергосистемы. Результатом перекомпенсации являлось увеличение суммарных потерь мощности и энергии в электрических сетях и усложнение, и удорожание устройств регулирования напряжения.
42 Основные потребители реактивной мощности. Мероприятия по уменьшению потребления реактивной мощности. Почему батареи конденсаторов включают в треугольник
Основные потребители реактивной мощности - асинхронные электродвигатели, которые потребляют 40 % всей мощности совместно с бытовыми и собственными нуждами; электрические печи 8 %; преобразователи 10 %; трансформаторы всех ступеней трансформации 35 %; линии электропередач 7 %.
Для снижения потребления реактивной мощности при эксплуатации электроустановок рекомендуются следующие мероприятия:
упорядочение технологического процесса, ведущее к улучшению энергетического режима оборудования и к снижению расчетного максимума реактивной нагрузки;
сокращение холостой работы асинхронных электродвигателей, сварочных трансформаторов и других электроприемников путем внедрения ограничителей холостого хода;
замена или отключение трансформаторов, загруженных менее чем на 30% их номинальной мощности, если это допускается по условиям режима работы сети электроприемников;
замена по возможности загруженных менее чем на 60% асинхронных электродвигателей электродвигателями меньшей мощности при условии технико-экономического обоснования;
замена асинхронных электродвигателей синхронными, допустимая по условиям работы электропривода, если асинхронные электродвигатели подлежат демонтажу вследствие износа, изменения технологического процесса или возможности использования в других установках, не нуждающихся в искусственной компенсации реактивных нагрузок, а также в других случаях, если замена обоснована технико-экономическими расчетами;
понижение напряжения у малозагруженных асинхронных электродвигателей путем переключения статорной обмотки с треугольника на звезду, секционирования статорных обмоток; понижение напряжения в сетях, питающих асинхронные электродвигатели, путем переключения ответвлений цехового трансформатора;
повышение качества ремонта электродвигателей (недопустимы обточка ротора, уменьшение числа проводников в пазу, расточка пазов, выжигание обмотки).
Для преобразовательных установок, получающих все более широкое распространение на промышленных предприятих, снижение реактивной мощности может быть достигнуто уменьшением угла открывания вентилей и пределов его регулирования, несимметричным управлением вентилями, применением схем с искусственной коммутацией.
