
- •Введение
- •Определение физических свойств газа, нефти , воды и многофазных систем (нефть-вода-газ) при различных термодинамических условиях
- •1.1. Определение физических свойств нефтяного газа по его компонентному составу
- •1.1.1. Методика расчета свойств газа по его компонентному составу
- •1.1.2. Пример расчета свойств газа по его компонентному составу Задача 1
- •1.1.3. Контрольные вопросы по практическому занятию
- •1.2. Уравнения состояния и их использование для расчета физических свойств газов
- •1.2.1. Определение физических свойств газа на основе уравнения состояния
- •1.2.2. Пример расчета свойств газа с использованием уравнения состояния Задача 2
- •1.2.3. Контрольные вопросы по практическому занятию
- •1.3. Расчет физических свойств пластовых нефтей при однократном разгазировании
- •1.3.2. Пример решения типовой задачи Задача 3
- •1.3.3. Контрольные вопросы по практическому занятию
- •1.4. Расчет физических свойств нефти в пластовых условиях
- •1.4.1. Методика определения физических свойств нефти при пластовых условиях
- •1.4.2. Пример расчета свойств нефти при пластовых условиях Задача 4
- •1.4.3. Контрольные вопросы по практическому занятию
- •1.5. Расчет физических свойств пластовых вод
- •1.5.1. Методика расчета физических свойств пластовых вод
- •1.5.2. Пример расчета свойств пластовой воды Задача 5
- •1.5.3. Контрольные вопросы по практическому занятию
- •1.6. Расчет физических свойств водонефтяных смесей
- •1.6.1. Методика расчета основных физических свойств водонефтяных смесей
- •1.6.1.1. Капельная структура
- •1.6.1.2. Эмульсионная структура.
- •1.6.2. Пример расчета свойств водонефтяной смеси в скважине Задача 6
- •1.6.3. Контрольные вопросы по практическому занятию
- •2. Расчет оборудования при фонтанной эксплуатации скважин
- •2.1. Расчет нкт при фонтанно-компрессорной эксплуатации скважин
- •2.2. Пример расчета глубины спуска нкт при фонтанной эксплуатации скважин Задача 7
- •Решение
- •2.3. Пример расчета глубины спуска ступенчатой нкт при фонтанной эксплуатации скважин Задача 8
- •Решение
- •2.4. Насосно-компрессорные трубы с защитными покрытиями
- •2.5. Пример расчета глубины спуска остеклованных нкт при фонтанной эксплуатации скважин Задача 9
- •Решение
- •2.6. Определение диаметра штуцера фонтанной арматуры
- •2.8.1. Условия фонтанирования скважин. Минимальное забойное давление фонтанирования
- •2.8.2. Пример расчета минимального забойного давления фонтанирования Задача 11
- •Решение
- •2.8.3. Контрольные вопросы по практическому занятию
- •3. Гидродинамический расчет движения газожидкостной смеси в колонне поъемных труб нефтяных скважин
- •3.1. Последовательность гидродинамического расчета движения гжс в скважине
- •3.2. Метод Поэтмана - Карпентера
- •3.3. Пример расчета движения гжс по методу Поэтмана - Карпентера Задача 12
- •Решение
- •3.4. Метод а. П. Крылова и г. С. Лутошкина
- •3.5. Пример расчета движения гжс по методу а.П. Крылова и г.С. Лутошкина Задача 13
- •Решение
- •4. Технологические расчеты при штанговой глубиннонасосной эксплуатации скважин
- •4.1. Выбор оборудования шгну и определение параметров работы насоса
- •4.2. Пример расчета шгну и выбора режима его эксплуатации Задача 14
- •Решение.
- •4.3. Определение нагрузок на головку балансира станка-качалки
- •4.4. Пример расчета нагрузок на головку балансира станка-качалки Задача 15
- •Решение
- •4.5. Определение длины хода плунжера штангового насоса
- •4.5.1. Длина хода плунжера с учетом действия статических сил
- •4.5.2. Определение длины хода плунжера с учетом статических и динамических сил
- •4.5.3. Пример расчета длины хода плунжера по статической теории Задача 16
- •Решение
- •4.5.4. Пример расчета длины хода плунжера по статической и динамической теориям Задача 17
- •Решение
- •4.6. Расчет производительности и определение коэффициента подачи шгну
- •4.6.1. Формула производительности по элементарной теории [27|
- •4.6.2. Производительность по элементарной теории а. Н. Адонина [1]
- •4.6.3. Формула производительности а. С. Вирновского
- •4.6.4. Учет гидродинамического трения по формуле а. С. Вирновского
- •4.6.5. Учет потерь на сопротивление жидкости в нагнетательном клапане и на трение плунжера о стенки цилиндра
- •4.6.6. Производительность шгну в случае двухступенчатой колонны штанг
- •4.6.7. Пример расчета производительности и коэффициента подачи шгну Задача 18
- •Решение
- •4.7. Расчет прочности колонны штанг
- •4.7.1. Пример выбора и расчета на прочность одноступенчатой колонны штанг Задача 19
- •Решение
- •4.7.2. Пример выбора и расчета на прочность двухступенчатой колонны штанг Задача 20
- •4.7.3. Пример выбора технологического режима эксплуатации двухступенчатой колонны штанг Задача 21
- •Решение
- •4.7.4. Пример выбора и расчета на прочность двухступенчатой колонны штанг Задача 22
- •Решение
- •4.8. Расчет нкт по аварийной нагрузке при эксплуатации шгну
- •4.9. Пример расчета аварийной нагрузки на колонну гладких нкт Задача 23
- •Решение
- •4.10. Расчет нкт на циклические нагрузки
- •5. Технологические расчеты при эксплуатации скважин электроцентробежными насосами (эцн)
- •5.1. Установки погружных электроцентробежных насосов
- •5.1.1. Погружные электроцентробежные насосы
- •5.1.2. Погружные электродвигатели
- •5.1.3. Кабельная линия
- •5.1.4. Выбор насосно-компрессорных труб
- •5.1.5. Определение необходимого напора эцн
- •5.1.6. Выбор центробежного насоса
- •5.1.7. Выбор электродвигателя
- •5.1.8. Пример подбора эцн в скважину Задача 24
- •Решение
- •5.2. Определение глубины погружения насоса под динамический уровень
- •5.2.1. Расчет оптимального, допускаемого и предельного давлений на приеме эцн
- •5.2.2. Пример оценки оптимального, допускаемого и предельного давлений на приеме эцн Задача 25
- •Решение
- •5.2.3. Работа газа по подъему жидкости
- •5.2.4. Пример расчета погружения насоса под динамический уровень Задача 26
- •Решение
- •5.3. Выбор кабеля, трансформатора и определение эксплуатационных параметров уэцн
- •5.3.1. Выбор кабеля
- •5.3.2. Выбор трансформатора
- •5.3.3. Определение габаритного диаметра уэцн и скорости движения охлаждающей жидкости
- •5.3.4. Определение удельного расхода электроэнергии установкой эцн
- •5.3.5. Пример расчета габаритов уэцн, скорости охлаждающей жидкости и удельного расхода электроэнергии Задача 27
- •Решение
- •Литература
- •Введение
4.7.4. Пример выбора и расчета на прочность двухступенчатой колонны штанг Задача 22
Выбрать материал для верхней секции колонны штанг по условиям задачи 15, исходя из рассчитанных нагрузок на головку балансира.
Решение
По условиям задачи 15 длина штанг 1870 м, из них dш2 = 22 мм, Lш2 = 560 м, dш1 = 19 мм, Lш1 = 1310 м.
Максимальная и минимальная нагрузки по теории Вирновского Рmax = 70930 Н; Pmin = 26927 Н.
Определим максимальное и минимальное напряжения по формулам (4.7) и (4.8):
;
.
Амплитудное напряжение
.
Приведенное напряжение
.
По табл. 4.4 выбираем материал верхней секции штанг. Это может быть сталь 20Н2М нормализованная с поверхностным упрочнением ТВЧ ( σпр =110 МПа) для некоррозионных условий или ст. 40 с такой же обработкой ( σпр = 120 МПа).
Запас по пределу текучести составит:
для
стали 20Н2М
;
для
стали 40
.
4.8. Расчет нкт по аварийной нагрузке при эксплуатации шгну
Аварийная нагрузка на НКТ возникает в случае обрыва шганг в процессе работы или спуска насоса в скважину [24]:
,
(4.52)
где Рт - вес труб без учета погружения их в жидкость; Рш.ж - вес штанг с учетом погружения их в жидкость; Рж - вес столба жидкости в трубах; Рi ш - сила инерция от массы оборвавшейся колонны штанг.
Вес колонны НКТ определяется по формуле
,
(4.53)
где Lт - длина колонны НКТ; qт - масса 1 п.м НКТ с учетом муфт; g - ускорение свободного падения.
Если предусматривается большое заглубление насоса под динамический уровень, то следует учесть облегчение в жидкости:
,
(4.54)
где Lт2 - длина участка колонны НКТ ниже динамического уровня.
Вес штанг в жидкости
,
(4.55)
где Lш - длина колонны штанг; qш - масса 1 п.м колонны шганг, ρшт - плотность материала штанг.
Вес столба жидкости в трубах
,
(4.56)
где d - внутренний диаметр НКТ.
Сила инерции от массы оборвавшейся колонны штанг определяется по ускорению падения
,
(4.57)
где fш - площадь поперечного сечения штанг; gп - ускорение падения штанг (gп = 3 ÷ 6 м/с2).
Для определения ускорения падения штанг в трубах рассмотрим две ситуации:
1) обрыв штанг в процессе работы насоса, который чаще всего и происходит. Максимальная длина хода плунжера наcoca у обычных СК- 3 м, у длинно-ходовых СК-6 м. Учитывая, что падение происходит в столбе жидкости, ускорение падения не превысит 3 ÷ 6 м/с2;
2) обрыв штанг в процессе спуска плунжера (насоса НГН или насоса НГВ редкий случай).
В этом случае ускорение падения может достигнуть 9,81 м/с2, однако установившийся в НКТ статический уровень жидкости самортизирует усилие от падающих штанг, погасив ускорение. Кроме того, в этом случае на трубы не действует вес столба жидкости, что снижает общую нагрузку на НКТ. Таким образом, целесообразно принимать ускорение падения штанг в пределах 3 ÷ 6 м/с2 в соответствии с длиной хода насоса.
Полученную аварийную нагрузку сопоставляют с расчетной (страгивающей или предельной нагрузкой):
,
(4.58)
где n = 1,1 ÷ 1,15.