
- •Введение
- •Определение физических свойств газа, нефти , воды и многофазных систем (нефть-вода-газ) при различных термодинамических условиях
- •1.1. Определение физических свойств нефтяного газа по его компонентному составу
- •1.1.1. Методика расчета свойств газа по его компонентному составу
- •1.1.2. Пример расчета свойств газа по его компонентному составу Задача 1
- •1.1.3. Контрольные вопросы по практическому занятию
- •1.2. Уравнения состояния и их использование для расчета физических свойств газов
- •1.2.1. Определение физических свойств газа на основе уравнения состояния
- •1.2.2. Пример расчета свойств газа с использованием уравнения состояния Задача 2
- •1.2.3. Контрольные вопросы по практическому занятию
- •1.3. Расчет физических свойств пластовых нефтей при однократном разгазировании
- •1.3.2. Пример решения типовой задачи Задача 3
- •1.3.3. Контрольные вопросы по практическому занятию
- •1.4. Расчет физических свойств нефти в пластовых условиях
- •1.4.1. Методика определения физических свойств нефти при пластовых условиях
- •1.4.2. Пример расчета свойств нефти при пластовых условиях Задача 4
- •1.4.3. Контрольные вопросы по практическому занятию
- •1.5. Расчет физических свойств пластовых вод
- •1.5.1. Методика расчета физических свойств пластовых вод
- •1.5.2. Пример расчета свойств пластовой воды Задача 5
- •1.5.3. Контрольные вопросы по практическому занятию
- •1.6. Расчет физических свойств водонефтяных смесей
- •1.6.1. Методика расчета основных физических свойств водонефтяных смесей
- •1.6.1.1. Капельная структура
- •1.6.1.2. Эмульсионная структура.
- •1.6.2. Пример расчета свойств водонефтяной смеси в скважине Задача 6
- •1.6.3. Контрольные вопросы по практическому занятию
- •2. Расчет оборудования при фонтанной эксплуатации скважин
- •2.1. Расчет нкт при фонтанно-компрессорной эксплуатации скважин
- •2.2. Пример расчета глубины спуска нкт при фонтанной эксплуатации скважин Задача 7
- •Решение
- •2.3. Пример расчета глубины спуска ступенчатой нкт при фонтанной эксплуатации скважин Задача 8
- •Решение
- •2.4. Насосно-компрессорные трубы с защитными покрытиями
- •2.5. Пример расчета глубины спуска остеклованных нкт при фонтанной эксплуатации скважин Задача 9
- •Решение
- •2.6. Определение диаметра штуцера фонтанной арматуры
- •2.8.1. Условия фонтанирования скважин. Минимальное забойное давление фонтанирования
- •2.8.2. Пример расчета минимального забойного давления фонтанирования Задача 11
- •Решение
- •2.8.3. Контрольные вопросы по практическому занятию
- •3. Гидродинамический расчет движения газожидкостной смеси в колонне поъемных труб нефтяных скважин
- •3.1. Последовательность гидродинамического расчета движения гжс в скважине
- •3.2. Метод Поэтмана - Карпентера
- •3.3. Пример расчета движения гжс по методу Поэтмана - Карпентера Задача 12
- •Решение
- •3.4. Метод а. П. Крылова и г. С. Лутошкина
- •3.5. Пример расчета движения гжс по методу а.П. Крылова и г.С. Лутошкина Задача 13
- •Решение
- •4. Технологические расчеты при штанговой глубиннонасосной эксплуатации скважин
- •4.1. Выбор оборудования шгну и определение параметров работы насоса
- •4.2. Пример расчета шгну и выбора режима его эксплуатации Задача 14
- •Решение.
- •4.3. Определение нагрузок на головку балансира станка-качалки
- •4.4. Пример расчета нагрузок на головку балансира станка-качалки Задача 15
- •Решение
- •4.5. Определение длины хода плунжера штангового насоса
- •4.5.1. Длина хода плунжера с учетом действия статических сил
- •4.5.2. Определение длины хода плунжера с учетом статических и динамических сил
- •4.5.3. Пример расчета длины хода плунжера по статической теории Задача 16
- •Решение
- •4.5.4. Пример расчета длины хода плунжера по статической и динамической теориям Задача 17
- •Решение
- •4.6. Расчет производительности и определение коэффициента подачи шгну
- •4.6.1. Формула производительности по элементарной теории [27|
- •4.6.2. Производительность по элементарной теории а. Н. Адонина [1]
- •4.6.3. Формула производительности а. С. Вирновского
- •4.6.4. Учет гидродинамического трения по формуле а. С. Вирновского
- •4.6.5. Учет потерь на сопротивление жидкости в нагнетательном клапане и на трение плунжера о стенки цилиндра
- •4.6.6. Производительность шгну в случае двухступенчатой колонны штанг
- •4.6.7. Пример расчета производительности и коэффициента подачи шгну Задача 18
- •Решение
- •4.7. Расчет прочности колонны штанг
- •4.7.1. Пример выбора и расчета на прочность одноступенчатой колонны штанг Задача 19
- •Решение
- •4.7.2. Пример выбора и расчета на прочность двухступенчатой колонны штанг Задача 20
- •4.7.3. Пример выбора технологического режима эксплуатации двухступенчатой колонны штанг Задача 21
- •Решение
- •4.7.4. Пример выбора и расчета на прочность двухступенчатой колонны штанг Задача 22
- •Решение
- •4.8. Расчет нкт по аварийной нагрузке при эксплуатации шгну
- •4.9. Пример расчета аварийной нагрузки на колонну гладких нкт Задача 23
- •Решение
- •4.10. Расчет нкт на циклические нагрузки
- •5. Технологические расчеты при эксплуатации скважин электроцентробежными насосами (эцн)
- •5.1. Установки погружных электроцентробежных насосов
- •5.1.1. Погружные электроцентробежные насосы
- •5.1.2. Погружные электродвигатели
- •5.1.3. Кабельная линия
- •5.1.4. Выбор насосно-компрессорных труб
- •5.1.5. Определение необходимого напора эцн
- •5.1.6. Выбор центробежного насоса
- •5.1.7. Выбор электродвигателя
- •5.1.8. Пример подбора эцн в скважину Задача 24
- •Решение
- •5.2. Определение глубины погружения насоса под динамический уровень
- •5.2.1. Расчет оптимального, допускаемого и предельного давлений на приеме эцн
- •5.2.2. Пример оценки оптимального, допускаемого и предельного давлений на приеме эцн Задача 25
- •Решение
- •5.2.3. Работа газа по подъему жидкости
- •5.2.4. Пример расчета погружения насоса под динамический уровень Задача 26
- •Решение
- •5.3. Выбор кабеля, трансформатора и определение эксплуатационных параметров уэцн
- •5.3.1. Выбор кабеля
- •5.3.2. Выбор трансформатора
- •5.3.3. Определение габаритного диаметра уэцн и скорости движения охлаждающей жидкости
- •5.3.4. Определение удельного расхода электроэнергии установкой эцн
- •5.3.5. Пример расчета габаритов уэцн, скорости охлаждающей жидкости и удельного расхода электроэнергии Задача 27
- •Решение
- •Литература
- •Введение
1.1.2. Пример расчета свойств газа по его компонентному составу Задача 1
Пересчитать объемный состав нефтяного газа, выделенного при однократном разгазировании нефти в условиях t = 20 °С и Р = Ро = 0,1013 Мпа в массовый и определить его физические характеристики. Состав газа и молекулярные массы каждого компонента приведены в первых четырех столбцах таблицы 2.
Решение
Используя формулу (1), проводим необходимые вычисления масс, а затем и массовых долей каждого компонента и заполняем последние три столбца таблицы 2.
Таблица 2.
№ пп |
Компонентный состав |
Объемное содержание, y i, % |
Молекулярн. масса, Мi, кг/моль |
Масса компонента, y i ·М i, кг |
Массовый состав, Gi |
|
Доли |
% |
|||||
1 |
СН4 |
35,5 |
16,04 |
569,5 |
0,176 |
17,6 |
2 |
С2Н6 |
23,9 |
30,07 |
718,7 |
0,222 |
22,2 |
3 |
С3Н8 |
19,4 |
44,097 |
855,5 |
0,264 |
26,4 |
4 |
i-C4Н10 |
2,5 |
58,124 |
145,3 |
0,045 |
4,5 |
5 |
n-C4Н10 |
6,7 |
58,124 |
389,4 |
0,12 |
12 |
6 |
i-C5Н12 |
1,8 |
72,151 |
129,9 |
0,04 |
4 |
7 |
n-C5Н12 |
1,7 |
72,151 |
122,7 |
0,038 |
3,8 |
8 |
C6H14+ высш. |
1,1 |
88,178 |
96,9 |
0,029 |
2,9 |
9 |
CO2 |
0,5 |
44,011 |
22,0 |
0,007 |
0,7 |
10 |
N2 |
6.9 |
28,016 |
193,3 |
0,059 |
5,9 |
|
Итого |
100,0 |
- |
3243,2 |
1,0 |
100 % |
Средняя молекулярная масса газа, рассчитываемая по формуле (3), будет равна:
Плотность газа при нормальных условиях определяется по формуле (7)
.
При стандартных условиях она находится по формуле (8)
Относительная плотность газа по воздуху будет равна по формуле (9)
.
1.1.3. Контрольные вопросы по практическому занятию
Перечислите основные компоненты, входящие в состав нефтяного газа?
Чем отличаются абсолютное и избыточное давления?
Какие термодинамические условия принято считать стандартными?
Какой объем занимает 1 кмоль нефтяного газа в стандартных условиях?
Как определяется молекулярная масса природного газа?
1.2. Уравнения состояния и их использование для расчета физических свойств газов
Целью настоящего практического занятия является изучение существующих методик определения физических свойств нефтяного и попутного газов на основе использования уравнения состояния реального газа. Нефтяной газ существенно отличается от идеальной системы прежде всего за счет эффекта сверхсжимаемости. В результате выполнения практической работы студенты должны:
усвоить теоретические представления об уравнении состояния нефтяного газа, его псевдокритических параметрах, определяемых свойствами отдельных компонентов;
изучить методики и формулы для расчета важнейших физических свойств газа с учетом коэффициента сверхсжимаемости;
самостоятельно решить две задачи для закрепления материала;
освоить приближенные способы расчета приведенных значений давления и температуры газа и прогнозирования его свойств;
углубить свои представления о сложности инженерных задач скважинной добычи нефти, которые необходимо уметь решать при всех способах эксплуатации нефтяных скважин.