
- •Введение
- •Определение физических свойств газа, нефти , воды и многофазных систем (нефть-вода-газ) при различных термодинамических условиях
- •1.1. Определение физических свойств нефтяного газа по его компонентному составу
- •1.1.1. Методика расчета свойств газа по его компонентному составу
- •1.1.2. Пример расчета свойств газа по его компонентному составу Задача 1
- •1.1.3. Контрольные вопросы по практическому занятию
- •1.2. Уравнения состояния и их использование для расчета физических свойств газов
- •1.2.1. Определение физических свойств газа на основе уравнения состояния
- •1.2.2. Пример расчета свойств газа с использованием уравнения состояния Задача 2
- •1.2.3. Контрольные вопросы по практическому занятию
- •1.3. Расчет физических свойств пластовых нефтей при однократном разгазировании
- •1.3.2. Пример решения типовой задачи Задача 3
- •1.3.3. Контрольные вопросы по практическому занятию
- •1.4. Расчет физических свойств нефти в пластовых условиях
- •1.4.1. Методика определения физических свойств нефти при пластовых условиях
- •1.4.2. Пример расчета свойств нефти при пластовых условиях Задача 4
- •1.4.3. Контрольные вопросы по практическому занятию
- •1.5. Расчет физических свойств пластовых вод
- •1.5.1. Методика расчета физических свойств пластовых вод
- •1.5.2. Пример расчета свойств пластовой воды Задача 5
- •1.5.3. Контрольные вопросы по практическому занятию
- •1.6. Расчет физических свойств водонефтяных смесей
- •1.6.1. Методика расчета основных физических свойств водонефтяных смесей
- •1.6.1.1. Капельная структура
- •1.6.1.2. Эмульсионная структура.
- •1.6.2. Пример расчета свойств водонефтяной смеси в скважине Задача 6
- •1.6.3. Контрольные вопросы по практическому занятию
- •2. Расчет оборудования при фонтанной эксплуатации скважин
- •2.1. Расчет нкт при фонтанно-компрессорной эксплуатации скважин
- •2.2. Пример расчета глубины спуска нкт при фонтанной эксплуатации скважин Задача 7
- •Решение
- •2.3. Пример расчета глубины спуска ступенчатой нкт при фонтанной эксплуатации скважин Задача 8
- •Решение
- •2.4. Насосно-компрессорные трубы с защитными покрытиями
- •2.5. Пример расчета глубины спуска остеклованных нкт при фонтанной эксплуатации скважин Задача 9
- •Решение
- •2.6. Определение диаметра штуцера фонтанной арматуры
- •2.8.1. Условия фонтанирования скважин. Минимальное забойное давление фонтанирования
- •2.8.2. Пример расчета минимального забойного давления фонтанирования Задача 11
- •Решение
- •2.8.3. Контрольные вопросы по практическому занятию
- •3. Гидродинамический расчет движения газожидкостной смеси в колонне поъемных труб нефтяных скважин
- •3.1. Последовательность гидродинамического расчета движения гжс в скважине
- •3.2. Метод Поэтмана - Карпентера
- •3.3. Пример расчета движения гжс по методу Поэтмана - Карпентера Задача 12
- •Решение
- •3.4. Метод а. П. Крылова и г. С. Лутошкина
- •3.5. Пример расчета движения гжс по методу а.П. Крылова и г.С. Лутошкина Задача 13
- •Решение
- •4. Технологические расчеты при штанговой глубиннонасосной эксплуатации скважин
- •4.1. Выбор оборудования шгну и определение параметров работы насоса
- •4.2. Пример расчета шгну и выбора режима его эксплуатации Задача 14
- •Решение.
- •4.3. Определение нагрузок на головку балансира станка-качалки
- •4.4. Пример расчета нагрузок на головку балансира станка-качалки Задача 15
- •Решение
- •4.5. Определение длины хода плунжера штангового насоса
- •4.5.1. Длина хода плунжера с учетом действия статических сил
- •4.5.2. Определение длины хода плунжера с учетом статических и динамических сил
- •4.5.3. Пример расчета длины хода плунжера по статической теории Задача 16
- •Решение
- •4.5.4. Пример расчета длины хода плунжера по статической и динамической теориям Задача 17
- •Решение
- •4.6. Расчет производительности и определение коэффициента подачи шгну
- •4.6.1. Формула производительности по элементарной теории [27|
- •4.6.2. Производительность по элементарной теории а. Н. Адонина [1]
- •4.6.3. Формула производительности а. С. Вирновского
- •4.6.4. Учет гидродинамического трения по формуле а. С. Вирновского
- •4.6.5. Учет потерь на сопротивление жидкости в нагнетательном клапане и на трение плунжера о стенки цилиндра
- •4.6.6. Производительность шгну в случае двухступенчатой колонны штанг
- •4.6.7. Пример расчета производительности и коэффициента подачи шгну Задача 18
- •Решение
- •4.7. Расчет прочности колонны штанг
- •4.7.1. Пример выбора и расчета на прочность одноступенчатой колонны штанг Задача 19
- •Решение
- •4.7.2. Пример выбора и расчета на прочность двухступенчатой колонны штанг Задача 20
- •4.7.3. Пример выбора технологического режима эксплуатации двухступенчатой колонны штанг Задача 21
- •Решение
- •4.7.4. Пример выбора и расчета на прочность двухступенчатой колонны штанг Задача 22
- •Решение
- •4.8. Расчет нкт по аварийной нагрузке при эксплуатации шгну
- •4.9. Пример расчета аварийной нагрузки на колонну гладких нкт Задача 23
- •Решение
- •4.10. Расчет нкт на циклические нагрузки
- •5. Технологические расчеты при эксплуатации скважин электроцентробежными насосами (эцн)
- •5.1. Установки погружных электроцентробежных насосов
- •5.1.1. Погружные электроцентробежные насосы
- •5.1.2. Погружные электродвигатели
- •5.1.3. Кабельная линия
- •5.1.4. Выбор насосно-компрессорных труб
- •5.1.5. Определение необходимого напора эцн
- •5.1.6. Выбор центробежного насоса
- •5.1.7. Выбор электродвигателя
- •5.1.8. Пример подбора эцн в скважину Задача 24
- •Решение
- •5.2. Определение глубины погружения насоса под динамический уровень
- •5.2.1. Расчет оптимального, допускаемого и предельного давлений на приеме эцн
- •5.2.2. Пример оценки оптимального, допускаемого и предельного давлений на приеме эцн Задача 25
- •Решение
- •5.2.3. Работа газа по подъему жидкости
- •5.2.4. Пример расчета погружения насоса под динамический уровень Задача 26
- •Решение
- •5.3. Выбор кабеля, трансформатора и определение эксплуатационных параметров уэцн
- •5.3.1. Выбор кабеля
- •5.3.2. Выбор трансформатора
- •5.3.3. Определение габаритного диаметра уэцн и скорости движения охлаждающей жидкости
- •5.3.4. Определение удельного расхода электроэнергии установкой эцн
- •5.3.5. Пример расчета габаритов уэцн, скорости охлаждающей жидкости и удельного расхода электроэнергии Задача 27
- •Решение
- •Литература
- •Введение
3.4. Метод а. П. Крылова и г. С. Лутошкина
Данный метод позволяет рассчитывать гидродинамические параметры газожидкостного потока двух структурных форм - пузырьковой и пробковой, характерных для большинства нефтяных скважин. Область существования указанных структур потока оценивают по критическому расходу газа, который в зависимости от диаметра колонны подъемных труб Dт и расхода жидкости при соответствующих термодинамических условиях Qж определяют из следующего выражения:
,
(34)
где Dт в м; Qж в м3/с.
По соотношению между расходом газа при данных Р и Т и его критическим значением определяют соответствующую структуру потока:
если Vг < Vг кр - пузырьковая, (35)
если Vг < Vг кр - пробковая. (36)
Истинную объемную долю газа φг в смеси соответствующей структуры в зависимости от расходных характеристик потока (Vг и Qж), его геометрии (Dт) и физических свойств фаз определяют из следующих соотношений, полученных на основе обработки экспериментальных данных:
пузырьковая структура
(37)
пробковая структура
(38)
где Dт, м; Vг, Qж, м3/с; σнг, σв - поверхностное натяжение на границе нефть-газ и соответственно вода-воздух, Н/м; можно принять σв ≈ 72∙10-3 Н/м.
Плотность газожидкостной смеси, определяющая гидростатическую составляющую общего градиента [см. формулу (1)], рассчитывают по формуле
(39)
Составляющую общего градиента давления, определяемую необратимыми потерями давления за счет трения и ускорения, для пузырьковой и пробковой структур потока рассчитывают с использованием следующего корреляционного соотношения:
(40)
где
-
градиент давления, обусловленный
гидравлическим трением при движении в
трубах только газа и полученный на
основании использования формулы Веймаута
;
-
градиент давления, обусловленный
гидравлическим трением при движении в
трубах жидкости и полученный на основании
использования формулы Блазиуса
;
-
градиент давления, обусловленный
взаимодействием фаз при их совместном
движении, k
- показатель степени, зависящий от
диаметра трубы:
Dт |
0,0381 |
0,0508 |
0,0635 |
0,0762 |
k |
1,06 |
0,87 |
0,73 |
0,65 |
μж - динамическая вязкость жидкости при соответствующих Р и Т, мПа-с.
Общий градиент давления потока газожидкостной смеси в точке или сечении колонны труб будет
,
(41)
Используя (39), можно рассчитать профиль давления в скважине, удовлетворяющей условиям, при котором справедлива применимость данного метода.
3.5. Пример расчета движения гжс по методу а.П. Крылова и г.С. Лутошкина Задача 13
Рассчитать по методу А. П. Крылова и Г. С. Лутошкина кривую распределения давления в подъемных трубах газлифтной скважины. Используя полученную кривую Р = f(Н), определить давление в точке ввода газа в колонну подъемных труб. Положение рабочего клапана Lрк известно. Исходные данные следующие:
Qжст = 96 м3/сут; ρнд = 849 кг/м3 ; Ру = 2 Мпа;
ρгo = 1,26 кг/м3; Рзаб = 12,5 Мпа; μнд = 10,2 мПаּс;
Тпл = 355 ºК; μнпл = 1,3 мПаּс; ω = 0,041 ˚К/м;
bн пл = 1,27 (объемный коэффициент пластовой нефти);
Lс = 2000 м; Г = 76,7 м3/м3; Dт = 0,0635 м;
Рнас = 11 Мпа; Lрк = 1200 м; Rг = 78 м3/м3; βв= 0.