
- •1 Вопрос Интерференция света.
- •2 Вопрос Методы наблюдения интерференции света
- •3 Вопрос. Интерференция света в тонких пленках
- •4 Вопрос. Дифракция света. Принцип Гюйгенса — Френеля
- •5 Вопрос. Метод зон Френеля. Прямолинейное распространение света.
- •10 Вопрос. Тепловое излучение и иго характеристики.
- •11 Вопрос. Формула Планка
- •12 Вопрос. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта.
- •13 Вопрос. Месса и импульс фотона. Давление света.
- •14 Вопрос. Модели атома
- •15 Вопрос. Постулаты Бора.
- •16 Вопрос. Корпускулярно-волновой дуализм свойств вещества.
- •17 Вопрос. Общие уравнение Шредингера.
- •19 Вопрос. Распределение электронов в атоме по состояниям
- •20 Вопрос Спектральный анализ. Эффекты Штарка и Зеема
- •21 Вопрос. Рентгеновские лучи. Характеристические спектры. Закон Мозли...
- •22 Вопрос. Вынужденное излучение и спонтанное поглащение. Комбинационное рассеяние света.
- •23 Вопрос Люминесценция. Закон Стокса.
- •24 Вопрос. Квантовые генераторы света (лазеры, мазеры)
- •25 Вопрос. Радиоактивность. Регистрация «радиоактивных» излучений. Закономерность распада...
- •26 Вопрос Строение ядра. Изотопы. Взаимопревращение нуклонов и в-излучений. Нейтрино.
- •27 Вопрос. Ядерные силы...
- •28 Вопрос. Возбужденное состояние ядер и γ-излучение. Эффект Месбауэра. Поглащение γ-лучей.
- •30 Вопрос. Космические лучи. Ускорители.
- •31 Вопрос. Ядерные реакции. Основные типы. Изотопы
- •32 Вопрос. Реакция деления ядра. Промышленные реакторы.
23 Вопрос Люминесценция. Закон Стокса.
Люминесценция — неравновесное излучение, избыточное при данной температуре над тепловым излучением тела и имеющее длительность, большую периода световых колебаний. Поэтому - люминесценция не является тепловым излучением; люминесценция не является таким видом свечения, как отражение и рассеяние света, тормозное излучение заряженных частиц и т. д.
В зависимости от способов возбуждения различают: фотолюминесценцию (под действием света), рентгенолюминесценцию (под действием рентгеновского излучения),катодолюмниесценцию (под действием электронов), электролюминесценцию (под действием электрического поля), раднелюминесценцию (при возбуждении ядерным излучением) хемилюминесценцию (при химических превращениях), триболюминесценцию (при растирании и раскалывании некоторых кристаллов, например сахара). По длительности свечения условно различаю : флуоресценцию и фосфоресценцию — свечение, продолжающееся заметный промежуток времени после прекращения возбуждения. Первое количественное исследование люминесценции проведено более ста лег назад Дж. Сгоксом, сформулировавшим в 1852 г. следующее правило: длина волны люминесцентного излучения всегда больше длины волны света, возбудившего его. Согласно квантовой теории, правило Стокса означает, что энергия hv падающего фотона частично расходуется на какие-то неоптические процессы, т. е. hv= hvлюм+∆Е откуда vлюм<v или λлюм>λ, что и следует из сформулированного правила.
24 Вопрос. Квантовые генераторы света (лазеры, мазеры)
Практически инверсное состояние среды осуществлено в принципиально новых источниках излучения — оптических квантовых генераторах, или лазерах. Лазеры генерируют в видимой, инфракрасной и ближней ультрафиолетовой областях. Идея качественно нового принципа усиления и генерации электромагнитных волн, примененная в мазерах - генераторы и усилители, работающие в сантиметровом диапазоне радиоволн, и лазерах, принадлежит российским ученым Н. Г. Басову и А. М. Прохорову и американскому физику Ч. Таунсу. Важнейшими из существующих типов лазеров являются твердотельные, газовые, полупроводниковые и жидкостные. Более точная классификация учитывает также и методы накачки — оптические, тепловые, химические, электроионизационные и др. Кроме того, необходимо принимать во внимание и режим генерации — непрерывный или импульсный.
Лазер обязательно имеет три основных компонента: 1) активную среду; 2) систему накачки; 3) оптический резонатор.
Для выделения направления лазерной генерации используется принципиально важный элемент лазера — оптический резонатор. В простейшем случае им служит пара обращенных друг к другу параллельных (или вогнутых) зеркал на общей оптической оси, между которыми помещается активная среда.
Лазерное излучение обладает следующими свойствами:
1.Временная и пространственная когерентность ; 2. Строгая монохроматичность ; 3. Большая плотность потока анергии. 4. Очень малое угловое расхождение в пучке.
Одним из важных применений лазеров является получение и исследование высокотемпературной плазмы. Эта область их применения связана с развитием нового направления — лазерного управляемого термоядерного синтеза. Лазеры широко применяются в измерительной технике. Интересное применение лазеры нашли в голографии. Для создавая систем топографической памяти с высокой степенью считывания и большой емкостью необходимы газовые лазеры видимого диапазона еще более высокой монохроматичности и направленности излучения.