
- •Лекция №1. Содержание лекции:
- •Введение. Задачи курса.
- •Классификация материалов.
- •Содержание элементов в Земной коре.
- •Мировой объем производства основных материалов.
- •Структурные методы исследования.
- •Типы кристаллических решеток, особенности строения реальных металлических материалов.
- •Применение правила фаз.
- •Факторы, влияющие на процесс кристаллизации. Модифицирование жидкого металла.
- •Материалы аморфного строения и их применение.
- •Полиморфные превращения в металлах.
- •Жидкие кристаллы.
- •Диаграмма состояния систем с полной растворимостью компонентов в твердом состоянии.
- •Применение правила отрезков.
- •Внутрикристаллическая ликвация.
- •Понятие об эвтектоидном и перитектоидном превращениях.
- •Диаграммы состояния системы, образующей химическое соединение.
- •Механические и технологические свойства сплавов, связь с типом диаграмм состояния.
- •Кривые охлаждения и анализ фазовых превращений железоуглеродистых сплавов.
- •Структура чугунов. Влияние примесей и скорости охлаждения (толщины отливки) на структуру чугунов.
- •Чугуны с пластинчатым, шаровидным, вермикулярным и хлопьевидным графитом: чпг, чшв, чвг, чхг. Механические свойства чугунов. Антифрикционные и легированные чугуны.
- •Влияние углерода и постоянных примесей на структуру и свойства стали.
- •Влияние легирующих элементов на структуру и фазовые превращения в стали.
- •Рост зерна аустенита. Мелкозернистые и крупнозернистые стали.
- •Понятия о превращениях в переохлажденном аустените (перлитное, бейнитное, мартенситное). Метастабильные структуры.
- •Виды термической обработки материалов.
- •Полный и нормализационный отжиг. Отжиг на зернистый перлит.
- •Закалка стали.
- •Способы объемной закалки.
- •Влияние термообработки на механические свойства.
- •Лекция № 10 Прокаливаемость стали. Виды и назначение отпуска. Превращения при нагреве закаленной стали. Прокаливаемость стали.
- •Превращения при нагреве закаленной стали.
- •Виды и назначение отпуска.
- •Лазерная термическая обработка.
- •Цементация стали. Строение цементованного слоя. Термическая обработка стали после цементации.
- •Втмо, нтмо.
- •Сверхпластичность.
- •Влияние термической обработки на механические свойства стали. Табл. 4.
- •Влияние электромагнитного поля на структуру и свойства металлических материалов.
- •Влияние температуры, порог хладноломкости.
- •Трещиностойкость, вязкость разрушения k1c.
- •Основные понятия механики разрушения: расчеты размеров трещины. Модели Гриффитса, Инглиса - Зинера и др.
- •Пути повышения прочности металлических материалов.
- •Высокопрочные материалы. Долговечность.
- •Цементуемые и улучшаемые стали, классификация по химическому составу.
- •Коррозоинностойкие стали.
- •Кислотостойкие стали и сплавы.
- •Магнитные стали и сплавы.
- •Электротехнические сплавы.
- •Сплавы с особыми тепловыми и упругими свойствами.
- •Углеродистые и легированные стали.
- •Быстрорежущие вольфрамосодержащие стали и их термическая обработка.
- •Безвольфрамовые теплостойкие стали.
- •Твердые сплавы. Твердые сплавы вк, тк, ттк, тн и др.
- •Сверхтвердые материалы (алмазы и др.).
- •Лекция № 19 Цветные металлы и сплавы. Сплавы алюминиевые деформированные и литейные. Закалка и старение. Модулированные структуры. Цветные металлы и сплавы.
- •Сплавы алюминиевые деформированные и литейные.
- •Закалка и старение.
- •Бронзы оловянные, алюминиевые и др. Модулированные структуры.
- •Магний и магниевые сплавы.
- •Бериллий.
- •Титан и его сплавы.
- •Антифрикционные материалы. Строение, свойства и применение.
- •Лекция № 21 Порошковые металлические материалы. Порошковые стали. Антифрикционные материалы. Фрикционные материалы. Пористые материалы. Порошковые металлические материалы.
- •Порошковые стали.
- •Антифрикционные материалы.
- •Фрикционные материалы.
- •Пористые материалы.
- •Строение макромолекул и над молекулярные структуры полимерных тел.
- •Физические (релаксационные) состояния полимеров.
- •Термопласты. Термоэластопласты. Олигомеры и реактопласты.
- •Каучуки и резиновые материалы.
- •Термоэластопласты
- •Стеклокристаллические материалы.
- •Конструкционные керамические материалы.
- •Углеродные и графитовые материалы. Строение, свойства и применение.
- •Материалы матрицы, виды и механические свойства волокон.
- •Совместимость матрицы и волокон.
- •Механические свойства композиционных материалов. Расчеты прочности км.
- •Механические свойства органических волокон.
- •Механические свойства борных волокон.
- •Механические свойства волокон карбида кремния на подложке w. Таблица.
- •Механические свойства некоторых пкм. Таблица.
- •Км на металлических матрицах, из керамики, силикатных стекол и углеродных материалов. Перспективы развития км.
- •Свойства типичных композитов с металлической матрицей.
Влияние термообработки на механические свойства.
В результате термической обработки существенно изменяются свойства стали. Наибольшее значение имеют механические свойства. Большинство стальных изделий машиностроения подвергается нормализации или закалке с высоким и средним отпуском (tотп > 400 C). В отожженном, нормализованном или отпущенном состоянии сталь состоит из пластинчатого феррита и включений карбидов. Феррит обладает низкой прочностью и высокой пластичностью, цементит при нулевых значениях пластичности имеет твердость около 800 НВ. При малом числе твердых включений пластическая деформация развивается беспрепятственно. Если после ТО частицы цементита измельчаются, тогда они начинают препятствовать движению дислокаций и сталь упрочняется. На твердость мартенсита оказывает влияние дисперсность его игольчатой структуры и содержание углерода. Рис. 44.
Рис. 44. Твердость стали в зависимости от содержания углерода и температуры закалки: 1 - нагрев выше Ас3, 2 - нагрев только выше Ас1, 3 - микротвердость
мартенсита.
Для получения высокого комплекса механических свойств следует стремится к тому, чтобы после закалки получалась мелкоигольчатая мартенситная структура, что достигается лишь при исходной мелкозернистой структуре. На свойства стали оказывает больше влияние содержание углерода (смотри выше) и температура отпуска. С ростом последней уменьшается твердость и прочность, но возрастают показатели пластичности и ударной вязкости.
Лекция № 10 Прокаливаемость стали. Виды и назначение отпуска. Превращения при нагреве закаленной стали. Прокаливаемость стали.
Под закаливаемостью понимают максимальное значение твердости, которую может приобрести данная сталь. Под прокаливаемостью подразумевают глубину проникновения закаленной зоны. Несквозная прокаливаемость связана с тем, что деталь быстрее охлаждается с поверхности, чем с сердцевины. Рис. 45.
Рис. 45. а Рис. 45. б
Рис. 45. Схемы, показывающие различную скорость охлаждения по сечению и в связи с этим несквозную прокаливаемость.
Распределение скорости охлаждения показано на Рис. 45 а. С уменьшением критической скорости закалки увеличивается и глубина закаленного слоя, и если Vk будет меньше скорости охлаждения в центре, то сечение закалится на сквозь. Если сечение велико и скорость на поверхности меньше Vk, то сталь не закалится даже на поверхности. Для практической оценки прокаливаемости используют величину - критический диаметр, т.е. максимальный диаметр (размер) образца, который прокаливается насквозь в данном охладителе. Чем лучше свойства охладителя тем больше Dкр. (Смотри лаб. раб. №8). Чтобы не ставить прокаливаемость в зависимости от способа охлаждения применяют идеальный критический диаметр. Для его определения используют метод торцевой закалки. Цилиндрический стальной образец, нагретый под закалку, охлаждается с торца струей воды.
Рис. 46. Кривая прокаливаемости стали.
Измерив твердость по длине, строят зависимость твердости от расстояния от закаленного торца. В ГОСТах приведены кривые прокаливаемости на базе из 100 и более плавок одной марки стали, указываются верхний и нижний пределы. Рис. 46. За границу между закаленной и незакаленной зонами понимают полумартенситный слой (50% мартенсита + .50% троостита). Прокаливаемость учитывают при выборе марки стали (Смотри лаб. раб. № 11).