
- •Инженерные сети ответы к зачету
- •Вопрос 1 Виды передачи тепла
- •Вопрос 2 Закон Фурье и коэффициент теплопроводности
- •Вопрос 3 Теплопроводность
- •Вопрос 4 Конвективный теплообмен
- •Вопрос 5 Теплообмен излучением
- •Вопрос 6 Сложный теплообмен и теплопередача
- •Вопрос 7 Термическое сопротивление. Теплотехнический расчет ограждающих конструкций
- •Вопрос 8 Понятие микроклимата. Теплообмен человека и условия комфортности. Нормативные требования к микроклимату
- •Вопрос 9 Системы инженерного оборудования зданий для создания и обеспечения заданного микроклимата помещений
- •Вопрос 10 Основная формула для расчета потерь тепла через ограждающие конструкции
- •Вопрос 11 Правила обмера поверхностей ограждающих конструкций
- •Вопрос 12 Расчетные температуры наружного и внутреннего воздуха
- •Вопрос 13 Потери тепла с инфильтрующимся воздухом. Добавочные потери тепла. Удельная тепловая характеристика
- •Вопрос 14 Вредные выделения от людей, солнечной радиации, других бытовых и производственных источников
- •Вопрос 15 Классификация систем отопления. Теплоносители
- •Вопрос 16 Устройство, принцип действия и классификация систем водяного отопления
- •Вопрос 17 Современные требования, предъявляемые к нагревательным приборам
- •Вопрос 18 Виды нагревательных приборов и их технико-экономические показатели
- •Вопрос 19 Определение необходимой поверхности нагревательных приборов
- •Вопрос 20 Циркуляционное давление в системах водяного отопления
- •1. Системы с естественной циркуляцией воды.
- •2. Системы с искусственной циркуляцией воды.
- •3. Подбор и установка циркуляционных насосов.
- •Вопрос 21 Основные принципы гидравлического расчета теплопроводов систем водяного отопления
- •Вопрос 22 Местное отопление. Печное, электрическое и газовое отопление. Отопление зданий повышенной этажности
- •1. Печное отопление.
- •2. Электрическое отопление.
- •3. Газовое отопление
- •Вопрос 23 Вентиляция зданий. Определение требуемого воздухообмена
- •Вопрос 24 Влажный воздух. I—d-диаграмма
- •Вопрос 25 Способы организации воздухообмена и устройство систем вентиляции
- •Вопрос 26 Естественная вентиляция (инфильтрация, аэрация)
- •Вопрос 27 Приточные и вытяжные системы механической общеобменной вентиляции
- •Вопрос 28 Устройства механической вентиляции. Вентиляторы. Калориферы. Фильтры
- •Вопрос 29 Аэродинамический расчет воздуховодов
- •Вопрос 30 Охрана воздушного бассейна. Общие сведения о загрязнении атмосферы
- •Вопрос 31 Очистка воздуха, удаляемого вытяжной вентиляцией. Шум в механических системах вентиляции
- •Вопрос 32 Виды скв, оборудование. Холодоснабжение
- •Вопрос 33 Источники теплоснабжения. Тепловые сети. Способы прокладки теплопроводов
- •Вопрос 34 Схемы присоединения теплопотребляющих систем к тепловым сетям
- •Вопрос 35 Оборудование тепловых пунктов зданий
- •Вопрос 36 Нетрадиционные источники энергоресурсов
- •Вопрос 37 Газоснабжение, транспортирование газа, газовые распределительные сети
- •Вопрос 38 Газорегуляторные пункты и установки, устройство и оборудование газовых сетей
- •Вопрос 39 Требования к помещениям с газовым оборудованием. Особенности эксплуатации газовых сетей
Вопрос 35 Оборудование тепловых пунктов зданий
Тепловые пункты — важное звено в системах централизованного теплоснабжения, связывающее тепловую сеть с потребителями и представляющее собой узел присоединения потребителей тепловой энергии к тепловой сети.
Основное назначение теплового пункта заключается в подготовке теплоносителя определенной температуры и давления, регулировании их, поддержании постоянного расхода, учете потребления теплоты.
Согласно СНиП 2.04.07—86 тепловые пункты подразделяются на: индивидуальные тепловые пункты (ИТП) — для присоединения систем отопления, вентиляции, горячего водоснабжения и технологических теплоиспользующих установок одного здания или его части и центральные (ЦТП) — то же, для двух или более зданий.
Вопрос 36 Нетрадиционные источники энергоресурсов
Ветроэнергетическая установка способна превращать энергию ветра в электроэнергию. Запасы ветровой энергии на территории нашей страны огромны, так как во многих районах среднегодовая скорость ветра составляет б м/с. Устройство ветроэнергетической установки достаточно простое: вал ветряного колеса, способного вращаться под действием ветра, передает вращение ротору генератора электрической энергии. Стоимость производства электроэнергии на ветровых электростанциях ниже, чем на любых других. Кроме того, ветроэнергетика экономит богатства недр. Недостатки ветроэнергетических установок — низкий коэффициент полезного действия, небольшая мощность. Они применяются там, где нет стабильного обеспечения электроэнергией — на нефтяных разработках, горных пастбищах, в пустынях и т. п.
Приливная энергетика использует для производства электроэнергии энергию прилива и отлива Мирового океана. Два раза в сутки уровень океана то поднимается, то опускается. Это происходит под действием гравитационных сил Солнца и Луны, которые притягивают к себе массы океанской воды. У берега моря разности уровней воды во время прилива и отлива могут достигать более 10 м. Если в заливе на берегу моря в устье реки сделать плотину, то в таком водохранилище во время прилива можно создать запас воды, которая при отливе будет спускаться в море и вращать гидротурбины. В нашей стране уже созданы и работают приливные электростанции. Основными недостатками такого способа производства электроэнергии являются неравномерность выработки электроэнергии во времени и необходимость сооружения дорогостоящих плотин и резервуаров для воды.
Гелиоэнергетика (энергия Солнца). Во второй половине XX в. в связи с бурным развитием космонавтики начали разрабатывать проблему гелиоэнергетики — преобразование солнечного излучения в электрическую энергию. В настоящее время получение электроэнергии от гелиоустановок осуществляется с помощью солнечных батарей. Основу таких батарей составляют фотоэлементы — кристаллы кремния, покрытые тончайшим, прозрачным для света слоем металла. Поток фотонов — частиц света, проходя сквозь слой металла, выбивает электроны из кристалла. Электроны при этом начинают концентрироваться в слое металла, поэтому между слоем металла и кристаллом возникает разность потенциалов. Если тысячи таких фотоэлементов соединить параллельно, то получается солнечная батарея, способная питать электроэнергией электронную аппаратуру на космических кораблях, спутниках. В южных районах, где много солнечных дней в году, размещение на крышах домов солнечных батарей может частично обеспечить потребность в необходимой электроэнергии. Такие батареи используют и для питания электронных часов, калькуляторов и других устройств.
Геотермальная ( гейзеры ).