
- •Формування первинних органів (первинний органогенез). Дефінітивний органогенез. Диференціація та інтеграція у розвитку.
- •1. Поняття про первинний органогенез як стадії ембріонального розвитку.
- •2. Диференціровка сомітів - дерматом, склеротом, міотом.
- •3. Джерела розвитку мезенхіми.
- •4. Коротка характеристика періоду розвитку дефінітивних органів зародка. Джерела утворення дефінітивних органів. Перетворення ектодерми, ентодерми та мезодерми в ході розвитку дефінітивних органів.
- •5. Экспериментальные аспекты раннего эмбрионального развития. Полипотентность (тотипотентность), унипотентность и детерминация клеток.
- •8. Закон г. Дриша. Интеграция в онтогенезе. Понятие об онтогенетических корреляциях.
- •9. Индукционные процессы в раннем эмбриональном развитии.
- •10. Механизмы дифференциации клеток в онтогенезе:
- •Механизмы избирательной активности генов
Механизмы избирательной активности генов
Согласно полностью подтвердившейся гипотезе «один ген - один фермент», сформулированной в 1941 году (Дж. Бидл и Э. Татум за это открытие в 1958 году были удостоены Нобелевской премии), каждый ген контролирует синтез одного фермента. Однако принцип экономии (а все экономно работающие механизмы получают селективное преимущество в эволюции) требует, чтобы в клетке синтезировались только те ферменты, которые необходимы в данных обстоятельствах. Такой организм не будет расходовать вещество и энергию на ненужные синтезы, имея потенциальный резерв генов, которые в случае нужды он может снова использовать. Поэтому гены, кодирующие синтез ненужных на данной стадии развития ферментов, инактивированы (избирательно блокированы).
В ходе эволюции сформировался ряд специальных механизмов избирательной активации генов. Один из них осуществляется с участием белков с низким молекулярным весом (2000-10000), входящих в состав хромосом - гистонов. Соединяясь с определёнными генами в цепи ДНК, гистоны препятствуют преждевременному считыванию информации, которая понадобится позже. Возможно, что и другие (негистоновые) белки, в т.ч. такие, синтез которых определяется генами-регуляторами, участвуют в инактивации генов, входящих в состав оперона (транскриптона).
Современными исследованиями показано, что структурные перестройки ДНК (инсерции) влияют на активацию генов. Инсерция (врезание молекулы ДНК или её фрагмента в ген) приводит к инактивации гена.
Общепризнанным является тот факт, что разные участки цитоплазмы зиготы (яйцеклетки), различающиеся молекулярной и субклеточной структурой и отходящие в различные бластомеры, влияют на активацию и инактивацию генов ядер этих бластомеров. Следовательно, различия участков цитоплазмы ранних бластомеров, как следствие явления ооплазматической сегрегации, могут обеспечивать активацию-инактивацию различных однотипных клеточных ядер.
Наблюдение над политенными (гигантскими, состоящими из нескольких сот и даже тысяч хромонем) хромосомами секреторных клеток слюнных желез насекомых показало наличие расширений или вздутий - пуф. Как оказалось, в области пуф хромонемы деспирализованы. Участки, в которых появляются пуфы, меняются в ходе онтогенеза в зависимости от стадии развития. По общему признанию, деспирализованные участки являются активными, служащими матрицей для биосинтеза иРНК. Поэтому изменение морфо-функционального состояния ДНК путём спирализации-деспирализации ДНК обоснованно рассматривается в качестве одного из основных механизмов избирательной активации генов.
На избирательную активность генов влияют перемещения (морфогенетические движения) клеток, их пространственное расположение. Они обеспечиваются способностью клеток к активному движению и адгезивности (избирательному образованию контактов друг с другом, в котором важную роль играет гликокаликс). Соседние клетки оказывают физические, химические и др. влияния на мигрировавшие и вступившие с ними в контакт клетки, избирательно активируя-инактивируя гены их ядер.
Морфогенетические движения клеток являются одним из механизмов избирательной активации генов.
На дифференциальную активность генов оказывают влияние гормоны, которые выделяются специализированными клетками и целенаправленно действуют на другие клетки и ткани. У млекопитающих, известно более 40 гормонов.
Различают 3 группы гормонов:
а) пептидные и белковые (инсулин, соматотропин, пролактин, лютеинизирующий и др.);
б) производные аминокислот (адреналин, норадреналин, тироксин);
в) стероидные (андрогены и эстрогены).
Под контролем гормонов протекают все основные процессы клеточного метаболизма (начиная с зиготы), включая транскрипцию генома, регуляцию активности генов.
Регуляция генетической активности имеет важное значение в приспособлении организмов к изменяющимся условиям среды. К сожалению, несмотря на достижения молекулярной биологии и генетики, многие вопросы дифференциальной активности генов в онтогенезе далеки от разрешения и остаются без ответов.