
- •Зондова та скануюча мікроскопія при дослідженні наноматеріалів.
- •3.Рентгенівські методи дослідження наноматеріалів
- •4.Методи мас-спектроскопії при досліджуванні наноматеріалів
- •5. Іч (Саша)
- •Спектроскопія ямр при досліджуванні наноматеріалів
- •Епр(саша)
- •Матеріали, що володіють властивостями молекулярного розпізнавання, їх характеристики, методи одержання та області застосування.
- •9. Плівкові матеріали; їх характеристики; методи одержання та області застосування (плівки, синтезовані методом само зборки, пошарово нарощені плівки та плівки Ленгмюра-Блоджетт).
- •12. Сенсори на основі наноструктурованих систем. Оптичні сенсори на основі оптодів.
- •14. Саша.
- •15. Спектрофотометрія та люмінісценція при дослідженні наноматеріалів.
- •16. Термічні методи аналізу при дослідженні наноматеріалів
- •17. Організовані системи на основі пар у схемах одержання наноматеріалів. Методи одержання, властивості та області застосування
- •18.Методи одержання, властивості та області застосування графену та нанотрубок.
- •19.Методи одержання, властивості та області застосування фулерену та наноалмазів
- •20. Методи одержання, властивості та області застосування наноматеріалів. Наночастинки металів.
- •Методи одержання, властивості та області застосування наноматеріалів. Квантові точки
- •22. Методи одержання, властивості та області застосування наноматеріалів. Матеріали на основі кристалічного силіцію.
- •Методи одержання, властивості та області застосування наноматеріалів. Оксидні матеріали.
- •Перспективи розвитку хім. Сенсорів на основі наноструктурованих систем. Наночіпи, нанофлюїдні системи та інтегровані сенсори.
20. Методи одержання, властивості та області застосування наноматеріалів. Наночастинки металів.
Основні властивості наноструктурованого золота
Як відомо, наночастинки вияляють дещо інші властивості порівняно з макроскопічними об’єктами з тієї самої речовини. Не є винятком і наночастинки золота (НЧЗ) та нанопокриття із золота (НПЗ). Одна із основних властивостей нанозолота, яка застосовується для медичних цілей — поверхневий плазмоновий резонанс. Це явище пов’язане із взаємодією вільних електронів атомів наночастинки, які знаходяться на її поверхні, з електромагнітними хвилями. При цьому, залежно від частоти хвилі падаючого світла та коливань цих електронів, воно може відбиватися чи поглинатися. Наночастинки здатні відбивати світло з інтенсивністю, що на порядки перевищує інтенсивність випромінювання багатьох відомих барвників, які використовуються у діагностичних цілях, при цьому, на відміну від останніх, не спостерігається ефекту знебарвлення (Sönnichsen G., Alivisatos A.P., 2005). Це зумовлює інтенсивність і колір забарвлення колоїдних розчинів наночастинок золота (червоний, блакитний, фіолетовий). Водночас НЧЗ сильно поглинають хвилі з певною довжиною з подальшим перетворенням енергії світла у теплову. Довжина хвилі, при якій спостерігають поверхневий плазмоновий резонанс, значно залежить від форми, розмірів та хімічної природи наночастинок (Jain P.K. et al., 2006). Явище поверхневого плазмонового резонансу лежить в основі нової методики діагностики та лікування злоякісних пухлин (Huang X. et al., 2008).
Гігантське (поверхнево підсилене) раманівське розсіювання — ще одна специфічна властивість нанометалів. Воно властиве для молекул, сорбованих на поверхнях металічних наночастинок. Це означає, що у раманівському спектрі тієї чи іншої сполуки виявляється сильне підсилення сигналу в певних діапазонах довжин хвиль. Підсилення може сягати 1014–1015, а отже стає можливим виявляти дуже незначні кількості речовини, аж до окремих молекул. Механізм раманівського розсіювання остаточно нез’ ясований, вважається, що цей феномен пов’ язаний із нерівностями на поверхні металічних наночастинок, їх агрегацією, розташуванням молекули визначуваної речовини. Отже, гігантське раманівське розсіювання може і на сьогодні вже використовується у надточних методах визначення біологічно активних речовин в організмі людини.
Інша важлива властивість НЧЗ і НПЗ, на відміну від макроскопічних об’ єктів, — їх хімічна активність. Відомо, що золото нанорівня має високу спорідненість до тіолових (-SH) груп. Це відкриває широкі можливості для поєднання НЧЗ із різноманітними молекулами (в тому числі й макромолекулами) шляхом хімічної взаємодії з поверхнями наночастинок. Цей прийом отримав назву кон’ югації, а у разі приєднання біологічно активних сполук — біокон’ югації. НЧЗ можуть переносити специфічні розпізнавальні молекули (антитіла й антигени, ДНК, ферменти, біотин або стрептавідин тощо) і використовуватись у імунологічних та біохімічних дослідженнях, а також у лікуванні. Іноді, коли молекула не має тіолової групи, цю групу приєднують шляхом хімічного синтезу або генно- інженерними методами. У деяких випадках біомолекули приєднуються до поверхні НЧЗ не ковалентно, а шляхом електростатичних, гідрофільних та гідрофобних взаємодій (Huang X. et al., 2008).
Колоїдним розчинам НЧЗ властива агрегативна нестійкість, особливо у присутності іонів (Na+, К+ тощо). Для зменшення нестійкості загальноприйнятим є метод функціоналізації — покриття поверхні наночастинки хімічними речовинами з метою покращення її властивостей. Для функціоналізації використовують поверхнево активні речовини (натрію додецилсульфат, цетилтриметиламонію бромід, тетраметиламонію бромід), полімери — поліетиленгліколь, полістиренсульфонат, а також полі- L- глютамінову кислоту (Shim J.Y., Gupta V.K., 2007). Функціоналізовані НЧЗ зберігають агрегативну стійкість протягом кількох місяців (Huang X. et al., 2008).
Висока каталітична активність — ще одна властивість золота, яка проявляється на нанорівні. Вона пов’язана із наявністю великої кількості поверхневих атомів золота, які взаємодіють із субстратом. Запропоновано деякі методики, які використовують каталітичну активність НЧЗ. Золото у поєднанні з оксидом церію каталізує реакцію окиснення чадного газу у вуглекислий (Chen J. еt al., 2007). Не менш важливими є й електрохімічні властивості НЧЗ, які використовуються у низці методик у ролі елементів нанобіосенсорів.
Особливу увагу в контексті медичного застосування слід звернути на токсичність нанозолота. У ряді робіт зазначається, що НЧЗ мають низьку цитотоксичність (Son S.J. еt al., 2007) та високу біосумісність. Незважаючи на це, бракує досліджень щодо токсичності нанозолота in vivo, що має бути необхідним етапом перед клінічними випробуваннями препаратів на основі НЧЗ.
Методи синтезу НЧЗ та НПЗ
НЧЗ для біомедичних цілей синтезують, як правило, «вологим» (у розчині) способом. В основі цієї методики лежить реакція відновлення тетрахлораурат-іону, який утворюється при розчиненні золота у суміші концентрованих нітратної та хлористоводневої кислоти. У ролі відновників виступають натрію цитрат (так званий синтез за Туркевичем), натрію борогідрид у присутності ПАР (наприклад цетилтриметиламонію броміду) або полімерів — полівінілацетату (Pardiñas-Blanco I. et al., 2008), полівінілпіролідону. Внаслідок реакції відновлення утворюються НЧЗ, ріст яких контролюється ПАР (Smith D.K. et al., 2008). До того ж застосування ПАР дозволяє на виході отримати готові стабільні колоїдні розчини з функціоналізованими НЧЗ. Таким чином отримують нанострижні та наносфери золота. Поширеним також є синтез «на затравці». У ролі «затравки» виступають наночастинки срібла (порядку 1–4 нм у довжину), які сприяють утворенню НЧЗ із розчину тетрахлораурату при відновленні такими речовинами, як аскорбінова кислота і карбонат калію (Lu L. еt al., 2008). Для пришвидшення та полегшення синтезу НЧЗ R. Guo та співавтори (2007) використали полімер хітозан з адсорбованими на ньому молекулами етилендиамінтетраоцтової кислоти (ЕДТА) у спиртовому розчині. Відомо, що ЕДТА є хелатоутворювачем та відновником, що й було використано при відновленні тетрахлораурату з уворенням НЧЗ. Для синтезу нанотрубок та НПЗ широко використовують вищезазначений темплатний синтез на полікарбонатній чи алюмінієвій анодизованій мембрані з витравленими «доріжками», заснований на електрохімічному осадженні золота.
Для отримання НЧЗ необхідної форми дуже важливо контролювати параметри синтезу: концентрацію тетрахлораурату, відновника, ПАР, температуру та час реакції. Слід відмітити дослідження L. Zhang та співавторів (2007), які пропонують застосувати у якості стабілізуючого агента при синтезі НЧЗ апоферитин селезінки коня. Це білок, який складається із 24 звивистих пучків, що збираються у 12 нм структуру з порожниною діаметром 8 нм. У цій порожнині здатні накопичуватись іони заліза (ІІІ), які утворюються із заліза (ІІ) у реакції окиснення оксигеном, каталізовані самим апоферитином. До того ж апоферитин виступає як «шаблон» і пасивний агент у синтезі НЧЗ.