
- •1.Расчитать минимальный коэффициент усиления выходного транзистора простейшего ттл вентиля.
- •2. Электрическая схема ттл вентиля со сложным инвертором.
- •3.Что такое таблица истинности. Функциональный контроль микросхем.
- •4. Способы включения биполярного транзистора как диода.
- •5.Принцип работы транзистора Шоттки.
- •7.Что такое радиочастотная идентификация. Диапазоны используемых частот в Европе.
- •8.Как влияет облучение на характеристики р-n перехода.
- •9.Что такое пинч-резистор?
- •10.Масштабирование. Основные принципы
- •11. Статическое электричество. Схема защиты от статического электричества.
- •12. Принцип работы транзистора в инверсном режиме
- •13. Первый и второй закон Мура.
- •14.Что такое потенциальные и импульсные схемы. Привести примеры.
- •15.Тиристор. Принцип работы
- •16.Туннельный диод Принцип работы.
- •17.Метод измерения динамических параметров интегральных схем.
- •18.Типы конденсаторов в интегральном исполнении
- •19. Виды полузаказных интегральных схем
- •Вентильные матрицы
- •2. Ис на основе готовых ячеек
- •1. Биполярные вентильныематрицы
- •20. Конструктивные и тепловые ограничения при проектировании интегральных схем
- •21. Модель Эберса-Молла биполярного транзистора
- •22. «Положительная» и «отрицательная» логика. Привести примеры
- •23. Способы включения биполярного транзистора.
- •24. Полевой транзистор. Принцип действия
- •25. Полевой транзистор с управляющим p-n переходом
- •26. Типы помех в интегральных схемах
- •27. Биполярный транзистор. Принцип работы
- •28. Зависимость потребляемой мощности кмоп вентиля от частоты.
- •29.Современные системы автоматической идентификации.
- •30. Формула вольт-амперной характеристики диода.
- •31. Полупроводниковые приборы с n - образными характеристиками.
- •32. Система параметров логических элементов.
- •34. Полупроводниковые приборы с отрицательным сопротивлением.
- •35. Способы включения биполярного транзистора и их конструктивные решения.
- •36. Конструкция и принцип работы многоэмиттерного транзистора.
- •37. Закон Мура. Степень интеграции интегральных схем.
- •38.Многослойные полупроводниковые структуры
- •39.Инжекционный вентиль. Принцип работы.
- •40.Расчет параметров интегрального резистора.
- •41.Формула коэффициента усиления биполярного транзистора.
- •42. Степень насыщения биполярного транзистора.
- •43. Чем отличается реальная вольтамперная характеристика р-п перехода от теоретической.
- •44. Как называются приборы, основанные на контакте металл-полупроводник.
- •45. Начертите схемы включения транзистора с общей базой, с общим эмиттером и с общим коллектором.
- •46. Нарисуйте схему устройства транзистора с изолированным затвором и объясните его принцип действия.
- •47. Объясните принцип действия динистора.
- •48. Назовите параметры тиристоров.
- •49.Что такое заказные и полузаказные интегральные схемы.
- •53. Нарисуйте передаточную характеристику логического вентиля, выполняющего функцию «инверсия».
- •Вопросы спиэ js_Edition
- •44. Как называются приборы, основанные на контакте металл-полупроводник.
- •45. Начертите схемы включения транзистора с общей базой, с общим эмиттером и с общим коллектором.
- •46. Нарисуйте схему устройства транзистора с изолированным затвором и объясните его принцип действия.
- •47. Объясните принцип действия динистора.
- •48. Назовите параметры тиристоров.
- •49.Что такое заказные и полузаказные интегральные схемы.
- •50.3Ависимость емкости конденсатора (мдп - процесс) от полярности подаваемого напряжения
- •51. Зависимость емкости конденсатора (мдп - процесс) от частоты.
- •52. Зависимость емкости конденсатора (биполярный тех.Процесс) от напряжения.
- •53. Нарисуйте передаточную характеристику логического вентиля, выполняющего функцию «инверсия».
- •54.Нарисуйте график зависимости мощности потребления от частоты для кмоп-схем.
- •54.Нарисуйте вертикальную структуру биполярного транзистора с диодом Шоттки.
- •55.Типы помех в интегральных схемах.
- •56.Принцип построения кольцевого генератора.
- •57.Принцип работы логического вентиля с тремя устойчивыми состояниями.
- •58.Нарисуйте вертикальную структуру р - п - р транзистора.
- •59. Нарисуйте вертикальную структуру р - п - р транзистора и п-р-п транзисторов изготовленных в одном техпроцессе.
- •60.Влияние температуры на параметры биполярного транзистора.
7.Что такое радиочастотная идентификация. Диапазоны используемых частот в Европе.
RFID (англ. Radio Frequency IDentification, радиочастотная идентификация) — метод автоматической идентификации объектов, в котором посредством радиосигналов считываются или записываются данные, хранящиеся в так называемых транспондерах, или RFID-метках.
Любая RFID-система состоит из считывающего устройства (считыватель, ридер или интеррогатор) и транспондера (он же RFID-метка, иногда также применяется термин RFID-тег).
Диапазон частот (и применение если спросит, но в общем они различаются по дальности):
Низкие частоты (НЧ, LF) – 125-134 КГц (животные)
Высокие частоты (ВЧ, HF) – 13,56 МГц (товары на складе)
Ультра-высокие частоты (УВЧ, UHF) – 860-960 МГц (передвегающийся обьект или товары на складе)
Микроволны (SHF) – 2,4 ГГц (передвегающийся обьект и товары на складе )
И еще 5 ГГц (дальние перевозки)
8.Как влияет облучение на характеристики р-n перехода.
Реакция интегральных микросхем (ИМС) на ионизирующее излучение обусловлена, в первую очередь, зависимостью параметров её элементов от эффектов смещения и ионизации. В свою очередь, конкретный вид энерговыделения (однородное, равновесное и т.п.) может приводить к появлению различных эффектов в микросхеме, особенности проявления которых определяются специфическими для нее технологическими и схемотехническими решениями. По причине возникновения эти эффекты можно подразделить на первичные - обусловленные непосредственно энергией излучения, поглощенной в ИМС (дефекты смещения, модуляция проводимости и т.п.), и вторичные - обязанные своим происхождением инициированному излучением перераспределению энергии внутренних и сто-ронних источников (радиационное защелкивание, вторичный фототек, пробой и т.п.).
С точки зрения функционирования ИМС в аппаратуре в зависимости от соотношения между длительностью воздействия излучения Ти и временем релаксации вызванного им возбуждения в системе Трел различают остаточные (долговременные Трел>>Ти) и переходные (кратковременные Ти>Трел) изменения параметров приборов.
Одним из основных параметров, характеризующих переходные ионизационные эффекты в элементах ИМС при равновесном энерговыделении, является величина ионизационного тока р-n-переходов, который можно представить в виде двух составляющих: 1)мгновенная составляющая, связанная с дрейфом избыточных носителей из обедненной области перехода;
2)запаздывающая составляющая, связанная с диффузией и дрейфом неравновесных носителей заряда из областей, прилегающих к обедненной области р-n-перехода. Соотношение амплитуд запаздывающей и мгновенной составляющих определяется параметрами р-n -перехода.
Долговременные изменения параметров транзисторов обусловлены эффектами смещения и ионизации.
Эффекты смещения, связанные с изменением кристаллической структуры полупроводника вследствие перемещения атомов из своего положения, вызывают изменение электрофизических свойств полупроводника: времени жизни, подвижности носителей заряда и их концентрации. Соответственно изменяются и параметры транзисторов, определяемые указанными величинами.
Эффекты ионизации, связанные с накоплением заряда в диэлектрических слоях и изменением плотности поверхностных состояний при ионизации полупроводника, также приводят к деградации параметров транзисторов.
Действие облучения на транзисторы удобно установить на основании его физических параметров, характеризующих процессы в транзисторной структуре.