
- •1.Расчитать минимальный коэффициент усиления выходного транзистора простейшего ттл вентиля.
- •2. Электрическая схема ттл вентиля со сложным инвертором.
- •3.Что такое таблица истинности. Функциональный контроль микросхем.
- •4. Способы включения биполярного транзистора как диода.
- •5.Принцип работы транзистора Шоттки.
- •7.Что такое радиочастотная идентификация. Диапазоны используемых частот в Европе.
- •8.Как влияет облучение на характеристики р-n перехода.
- •9.Что такое пинч-резистор?
- •10.Масштабирование. Основные принципы
- •11. Статическое электричество. Схема защиты от статического электричества.
- •12. Принцип работы транзистора в инверсном режиме
- •13. Первый и второй закон Мура.
- •14.Что такое потенциальные и импульсные схемы. Привести примеры.
- •15.Тиристор. Принцип работы
- •16.Туннельный диод Принцип работы.
- •17.Метод измерения динамических параметров интегральных схем.
- •18.Типы конденсаторов в интегральном исполнении
- •19. Виды полузаказных интегральных схем
- •Вентильные матрицы
- •2. Ис на основе готовых ячеек
- •1. Биполярные вентильныематрицы
- •20. Конструктивные и тепловые ограничения при проектировании интегральных схем
- •21. Модель Эберса-Молла биполярного транзистора
- •22. «Положительная» и «отрицательная» логика. Привести примеры
- •23. Способы включения биполярного транзистора.
- •24. Полевой транзистор. Принцип действия
- •25. Полевой транзистор с управляющим p-n переходом
- •26. Типы помех в интегральных схемах
- •27. Биполярный транзистор. Принцип работы
- •28. Зависимость потребляемой мощности кмоп вентиля от частоты.
- •29.Современные системы автоматической идентификации.
- •30. Формула вольт-амперной характеристики диода.
- •31. Полупроводниковые приборы с n - образными характеристиками.
- •32. Система параметров логических элементов.
- •34. Полупроводниковые приборы с отрицательным сопротивлением.
- •35. Способы включения биполярного транзистора и их конструктивные решения.
- •36. Конструкция и принцип работы многоэмиттерного транзистора.
- •37. Закон Мура. Степень интеграции интегральных схем.
- •38.Многослойные полупроводниковые структуры
- •39.Инжекционный вентиль. Принцип работы.
- •40.Расчет параметров интегрального резистора.
- •41.Формула коэффициента усиления биполярного транзистора.
- •42. Степень насыщения биполярного транзистора.
- •43. Чем отличается реальная вольтамперная характеристика р-п перехода от теоретической.
- •44. Как называются приборы, основанные на контакте металл-полупроводник.
- •45. Начертите схемы включения транзистора с общей базой, с общим эмиттером и с общим коллектором.
- •46. Нарисуйте схему устройства транзистора с изолированным затвором и объясните его принцип действия.
- •47. Объясните принцип действия динистора.
- •48. Назовите параметры тиристоров.
- •49.Что такое заказные и полузаказные интегральные схемы.
- •53. Нарисуйте передаточную характеристику логического вентиля, выполняющего функцию «инверсия».
- •Вопросы спиэ js_Edition
- •44. Как называются приборы, основанные на контакте металл-полупроводник.
- •45. Начертите схемы включения транзистора с общей базой, с общим эмиттером и с общим коллектором.
- •46. Нарисуйте схему устройства транзистора с изолированным затвором и объясните его принцип действия.
- •47. Объясните принцип действия динистора.
- •48. Назовите параметры тиристоров.
- •49.Что такое заказные и полузаказные интегральные схемы.
- •50.3Ависимость емкости конденсатора (мдп - процесс) от полярности подаваемого напряжения
- •51. Зависимость емкости конденсатора (мдп - процесс) от частоты.
- •52. Зависимость емкости конденсатора (биполярный тех.Процесс) от напряжения.
- •53. Нарисуйте передаточную характеристику логического вентиля, выполняющего функцию «инверсия».
- •54.Нарисуйте график зависимости мощности потребления от частоты для кмоп-схем.
- •54.Нарисуйте вертикальную структуру биполярного транзистора с диодом Шоттки.
- •55.Типы помех в интегральных схемах.
- •56.Принцип построения кольцевого генератора.
- •57.Принцип работы логического вентиля с тремя устойчивыми состояниями.
- •58.Нарисуйте вертикальную структуру р - п - р транзистора.
- •59. Нарисуйте вертикальную структуру р - п - р транзистора и п-р-п транзисторов изготовленных в одном техпроцессе.
- •60.Влияние температуры на параметры биполярного транзистора.
42. Степень насыщения биполярного транзистора.
Режим насыщения
Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками UЭБ и UКБ. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ.нас) и коллектора (IК.нас).
Глубину
насыщения транзистора характеризуют
коэффициентом (степенью) насыщения,
который определяет, во сколько раз
реальный ток базы превосходит минимальное
значение, при котором имеет место режим
насыщения:
Величину коэффициента насыщения выбирают от 1.5 до 3.
Транзистор
должен входить в режим насыщения,
когда входное напряжение превышает
напряжение логической единицы
. Для ключей на биполярных транзисторах
.Передаточная характеристика ключа
на БТ показана на рис. 7.2.
Рабочими являются участки переходной характеристики, соответствующие отсечке и насыщению
43. Чем отличается реальная вольтамперная характеристика р-п перехода от теоретической.
Вольт- амперная характеристика p-n-перехода представляет собой зависимость тока через p-n-переход от величины и полярности приложенного напряжения. При выводе вольт- амперной характеристики можно предположить, что токи неосновных носителей заряда через переход с изменением полярности и величины приложенного напряжения не изменяются. Токи основных носителей меняются существенно и при приложении обратного напряжения резко уменьшаются. Токи основных носителей можно рассматривать как токи эмиссии зарядов через контактный слой , скачок потенциальной энергии на котором равен работе выхода электрона. При этом предположении токи основных носителей с увеличением обратного напряжения будут уменьшаться по экспоненциальному закону . Плотность тока основных носителей можно записать так:
Если прикладывать прямое напряжение, высота барьера уменьшается итоки основных носителей будут экспоненциально возрастать . Плотность полного тока через переход будет равна
где I0 — обратный ток, называемый тепловым током , или током насыщения :
По
своей физической природе он представляет
собой ток экстракции , следовательно,
величина его очень мала. Вольт-
амперная характеристика, соответствующая
этому вы-ражению , показана на рис.
При
T =300К величина
, поэтому при относительно небольшом
прямом напряжении ток через переход
резко воз-растает. При подаче
обратного напряжения ток, изменив
направление, быстро достигает значения
I0
, а далее остается постоянным независимо
от величины приложенного напряжения.
Реальная
характеристика p-n-перехода отличается
от теоретической( рис. 2.). Эти различия
обусловлены термогенерацией носителей
в запирающем слое перехода , падением
напряжения на сопротивлениях областей
полупроводника, а также явлением
пробоя при обратном напряжен
ии.