
- •1.Расчитать минимальный коэффициент усиления выходного транзистора простейшего ттл вентиля.
- •2. Электрическая схема ттл вентиля со сложным инвертором.
- •3.Что такое таблица истинности. Функциональный контроль микросхем.
- •4. Способы включения биполярного транзистора как диода.
- •5.Принцип работы транзистора Шоттки.
- •7.Что такое радиочастотная идентификация. Диапазоны используемых частот в Европе.
- •8.Как влияет облучение на характеристики р-n перехода.
- •9.Что такое пинч-резистор?
- •10.Масштабирование. Основные принципы
- •11. Статическое электричество. Схема защиты от статического электричества.
- •12. Принцип работы транзистора в инверсном режиме
- •13. Первый и второй закон Мура.
- •14.Что такое потенциальные и импульсные схемы. Привести примеры.
- •15.Тиристор. Принцип работы
- •16.Туннельный диод Принцип работы.
- •17.Метод измерения динамических параметров интегральных схем.
- •18.Типы конденсаторов в интегральном исполнении
- •19. Виды полузаказных интегральных схем
- •Вентильные матрицы
- •2. Ис на основе готовых ячеек
- •1. Биполярные вентильныематрицы
- •20. Конструктивные и тепловые ограничения при проектировании интегральных схем
- •21. Модель Эберса-Молла биполярного транзистора
- •22. «Положительная» и «отрицательная» логика. Привести примеры
- •23. Способы включения биполярного транзистора.
- •24. Полевой транзистор. Принцип действия
- •25. Полевой транзистор с управляющим p-n переходом
- •26. Типы помех в интегральных схемах
- •27. Биполярный транзистор. Принцип работы
- •28. Зависимость потребляемой мощности кмоп вентиля от частоты.
- •29.Современные системы автоматической идентификации.
- •30. Формула вольт-амперной характеристики диода.
- •31. Полупроводниковые приборы с n - образными характеристиками.
- •32. Система параметров логических элементов.
- •34. Полупроводниковые приборы с отрицательным сопротивлением.
- •35. Способы включения биполярного транзистора и их конструктивные решения.
- •36. Конструкция и принцип работы многоэмиттерного транзистора.
- •37. Закон Мура. Степень интеграции интегральных схем.
- •38.Многослойные полупроводниковые структуры
- •39.Инжекционный вентиль. Принцип работы.
- •40.Расчет параметров интегрального резистора.
- •41.Формула коэффициента усиления биполярного транзистора.
- •42. Степень насыщения биполярного транзистора.
- •43. Чем отличается реальная вольтамперная характеристика р-п перехода от теоретической.
- •44. Как называются приборы, основанные на контакте металл-полупроводник.
- •45. Начертите схемы включения транзистора с общей базой, с общим эмиттером и с общим коллектором.
- •46. Нарисуйте схему устройства транзистора с изолированным затвором и объясните его принцип действия.
- •47. Объясните принцип действия динистора.
- •48. Назовите параметры тиристоров.
- •49.Что такое заказные и полузаказные интегральные схемы.
- •53. Нарисуйте передаточную характеристику логического вентиля, выполняющего функцию «инверсия».
- •Вопросы спиэ js_Edition
- •44. Как называются приборы, основанные на контакте металл-полупроводник.
- •45. Начертите схемы включения транзистора с общей базой, с общим эмиттером и с общим коллектором.
- •46. Нарисуйте схему устройства транзистора с изолированным затвором и объясните его принцип действия.
- •47. Объясните принцип действия динистора.
- •48. Назовите параметры тиристоров.
- •49.Что такое заказные и полузаказные интегральные схемы.
- •50.3Ависимость емкости конденсатора (мдп - процесс) от полярности подаваемого напряжения
- •51. Зависимость емкости конденсатора (мдп - процесс) от частоты.
- •52. Зависимость емкости конденсатора (биполярный тех.Процесс) от напряжения.
- •53. Нарисуйте передаточную характеристику логического вентиля, выполняющего функцию «инверсия».
- •54.Нарисуйте график зависимости мощности потребления от частоты для кмоп-схем.
- •54.Нарисуйте вертикальную структуру биполярного транзистора с диодом Шоттки.
- •55.Типы помех в интегральных схемах.
- •56.Принцип построения кольцевого генератора.
- •57.Принцип работы логического вентиля с тремя устойчивыми состояниями.
- •58.Нарисуйте вертикальную структуру р - п - р транзистора.
- •59. Нарисуйте вертикальную структуру р - п - р транзистора и п-р-п транзисторов изготовленных в одном техпроцессе.
- •60.Влияние температуры на параметры биполярного транзистора.
30. Формула вольт-амперной характеристики диода.
Расчет
ВАХ диода идет по следующей формуле:
,
где
в
еличина
I0
представляет тепловой ток p-n–перехода,
называемый также током насыщения. Для
комнатной температуры kT/q
= 0,026 B. (q-заряд
электрона, к- постоянная Стэфана-Больцмана)
ВАХ на всякий случай>>>>>>>>>>>>
31. Полупроводниковые приборы с n - образными характеристиками.
S-приборы полупроводниковые приборы, действие которых основано на S-oбразной вольт-амперной характеристике, на которой есть один (АВ) или несколько участков с отрицательным сопротивлением. У полупроводниковых приборов существует 2 типа нелинейных вольтамперных характеристик. Один из них характеризуется N-oбразной формой (см. Туннельный диод, Ганна диод), другой — S-oбразной.
Обычные диоды при увеличении прямого напряжения монотонно увеличивают пропускаемый ток. В туннельном диоде квантово-механическое туннелирование электронов добавляет горб в вольтамперную характеристику, при этом, из-за высокой степени легирования p и n областей, напряжение пробоя уменьшается практически до нуля. Туннельный эффект позволяет электронам преодолеть энергетический барьер в зоне перехода с шириной 50..150 Å при таких напряжениях, когда зона проводимости в n-области имеет равные энергетические уровни с валентной зоной р-области.[1] При дальнейшем увеличении прямого напряжения уровень Ферми n-области поднимается относительно р-области, попадая на запрещённую зону р-области, а поскольку тунелирование не может изменить полную энергию электрона[2], вероятность перехода электрона из n-области в p-область резко падает. Это создаёт на прямом участке вольт-амперной характеристики участок, где увеличение прямого напряжения сопровождается уменьшением силы тока. Данная область отрицательного дифференциального сопротивления и используется для усиления слабых сверхвысокочастотных сигналов.
Диод Ганна (изобретён Джоном Ганном в 1963 году) — тип полупроводниковых диодов, использующийся для генерации и преобразования колебаний в диапазоне СВЧ. В отличие от других типов диодов, принцип действия диода Ганна основан не на свойствах p-n-переходов, а на собственных объёмных свойствах полупроводника.
Традиционно диод Ганна состоит из слоя арсенида галлия толщиной от единиц до сотен микрометров с омическими контактами с обеих сторон. В этом материале в зоне проводимости имеются два минимума энергии, которым соответствуют два состояния электронов — «тяжёлые» и «лёгкие». В связи с этим с ростом напряжённости электрического поля средняя дрейфовая скорость электронов увеличивается до достижения полем некоторого критического значения, а затем уменьшается, стремясь к скорости насыщения.
Таким образом, если к диоду приложено напряжение, превышающее произведение критической напряжённости поля на толщину слоя арсенида галлия в диоде, равномерное распределение напряжённости по толщине слоя становится неустойчиво. Тогда при возникновении даже в тонкой области небольшого увеличения напряжённости поля электроны, расположенные ближе к аноду, «отступят» от этой области к нему, а электроны, расположенные у катода, будут пытаться «догнать» получившийся движущийся к аноду двойной слой зарядов. При движении напряжённость поля в этом слое будет непрерывно возрастать, а вне его — снижаться, пока не достигнет равновесного значения. Такой движущийся двойной слой зарядов с высокой напряжённостью электрического поля внутри получил название домена сильного поля, а напряжение, при котором он возникает — порогового.
В момент зарождения домена ток в диоде максимален. По мере формирования домена он уменьшается и достигает своего минимума по окончании формирования. Достигая анода, домен разрушается, и ток снова возрастает. Но едва он достигнет максимума, у катода формируется новый домен. Частота, с которой этот процесс повторяется, обратно пропорциональна толщине слоя полупроводника и называется пролетной частотой.
При помещении диода Ганна в резонатор возможны другие режимы генерации, при которых частота колебаний может быть сделана как ниже, так и выше пролетной частоты. Эффективность такого генератора относительно высока, но максимальная мощность не превышает 200—300мВт.
Наряду с арсенидом галлия для изготовления диодов Ганна также используется фосфид индия (до 170 ГГц) и нитрид галлия (GaN) на котором и была достигнута наиболее высокая частота колебаний в диодах Ганна — 3 ТГц.