
- •1.Расчитать минимальный коэффициент усиления выходного транзистора простейшего ттл вентиля.
- •2. Электрическая схема ттл вентиля со сложным инвертором.
- •3.Что такое таблица истинности. Функциональный контроль микросхем.
- •4. Способы включения биполярного транзистора как диода.
- •5.Принцип работы транзистора Шоттки.
- •7.Что такое радиочастотная идентификация. Диапазоны используемых частот в Европе.
- •8.Как влияет облучение на характеристики р-n перехода.
- •9.Что такое пинч-резистор?
- •10.Масштабирование. Основные принципы
- •11. Статическое электричество. Схема защиты от статического электричества.
- •12. Принцип работы транзистора в инверсном режиме
- •13. Первый и второй закон Мура.
- •14.Что такое потенциальные и импульсные схемы. Привести примеры.
- •15.Тиристор. Принцип работы
- •16.Туннельный диод Принцип работы.
- •17.Метод измерения динамических параметров интегральных схем.
- •18.Типы конденсаторов в интегральном исполнении
- •19. Виды полузаказных интегральных схем
- •Вентильные матрицы
- •2. Ис на основе готовых ячеек
- •1. Биполярные вентильныематрицы
- •20. Конструктивные и тепловые ограничения при проектировании интегральных схем
- •21. Модель Эберса-Молла биполярного транзистора
- •22. «Положительная» и «отрицательная» логика. Привести примеры
- •23. Способы включения биполярного транзистора.
- •24. Полевой транзистор. Принцип действия
- •25. Полевой транзистор с управляющим p-n переходом
- •26. Типы помех в интегральных схемах
- •27. Биполярный транзистор. Принцип работы
- •28. Зависимость потребляемой мощности кмоп вентиля от частоты.
- •29.Современные системы автоматической идентификации.
- •30. Формула вольт-амперной характеристики диода.
- •31. Полупроводниковые приборы с n - образными характеристиками.
- •32. Система параметров логических элементов.
- •34. Полупроводниковые приборы с отрицательным сопротивлением.
- •35. Способы включения биполярного транзистора и их конструктивные решения.
- •36. Конструкция и принцип работы многоэмиттерного транзистора.
- •37. Закон Мура. Степень интеграции интегральных схем.
- •38.Многослойные полупроводниковые структуры
- •39.Инжекционный вентиль. Принцип работы.
- •40.Расчет параметров интегрального резистора.
- •41.Формула коэффициента усиления биполярного транзистора.
- •42. Степень насыщения биполярного транзистора.
- •43. Чем отличается реальная вольтамперная характеристика р-п перехода от теоретической.
- •44. Как называются приборы, основанные на контакте металл-полупроводник.
- •45. Начертите схемы включения транзистора с общей базой, с общим эмиттером и с общим коллектором.
- •46. Нарисуйте схему устройства транзистора с изолированным затвором и объясните его принцип действия.
- •47. Объясните принцип действия динистора.
- •48. Назовите параметры тиристоров.
- •49.Что такое заказные и полузаказные интегральные схемы.
- •53. Нарисуйте передаточную характеристику логического вентиля, выполняющего функцию «инверсия».
- •Вопросы спиэ js_Edition
- •44. Как называются приборы, основанные на контакте металл-полупроводник.
- •45. Начертите схемы включения транзистора с общей базой, с общим эмиттером и с общим коллектором.
- •46. Нарисуйте схему устройства транзистора с изолированным затвором и объясните его принцип действия.
- •47. Объясните принцип действия динистора.
- •48. Назовите параметры тиристоров.
- •49.Что такое заказные и полузаказные интегральные схемы.
- •50.3Ависимость емкости конденсатора (мдп - процесс) от полярности подаваемого напряжения
- •51. Зависимость емкости конденсатора (мдп - процесс) от частоты.
- •52. Зависимость емкости конденсатора (биполярный тех.Процесс) от напряжения.
- •53. Нарисуйте передаточную характеристику логического вентиля, выполняющего функцию «инверсия».
- •54.Нарисуйте график зависимости мощности потребления от частоты для кмоп-схем.
- •54.Нарисуйте вертикальную структуру биполярного транзистора с диодом Шоттки.
- •55.Типы помех в интегральных схемах.
- •56.Принцип построения кольцевого генератора.
- •57.Принцип работы логического вентиля с тремя устойчивыми состояниями.
- •58.Нарисуйте вертикальную структуру р - п - р транзистора.
- •59. Нарисуйте вертикальную структуру р - п - р транзистора и п-р-п транзисторов изготовленных в одном техпроцессе.
- •60.Влияние температуры на параметры биполярного транзистора.
22. «Положительная» и «отрицательная» логика. Привести примеры
В реальных системах, как правило, используется напряжение 0 и 5 вольт, хотя для внутренних вентилей таких сложных устройств, как микропроцессоры, эти уровни могут быть существенно ниже. Имея два напряжения, скажем, эти же 0 и 5 вольт, необходимо решить, какое из них приписать каждому логическому значению. Обычно для представления логической 1 выбирается более высокое напряжение, а для представления логического нуля – более низкое (т.е 5 В = 1 и 0В=0). Такая логика получила название положительной. Можно использовать и наоборот, когда высокое напряжение соответствует логическому 0, а низкое 1. Такая логика называется отрицательной.Возможно и одновременное использование в одной системе обеих логик (при этом по-прежнему должны использоваться только два напряжения). Использование двух представлений в одной логической схеме получило название смешанной логики.
Самым важным следствием применения отрицательной логики является то, что при переходе от положительной логики к отрицательной функция И превращается в ИЛИ, и наоборот.
К сожалению, иногда соглашение положительной логики вступает в конфликт с требованиями электротехники. Так, потребление по питанию ТТЛ-элементов, обслуживающих числовую магистраль, часто меньше при высоком уровне сигнала в магистрали и больше при низком. Поэтому если магистраль значительную часть времени находится в режиме ожидания, то именно неактивный, не утверждающий, логически нулевой сигнал рационально отождествить с высоким уровнем напряжения в магистрали, т. е. принять соглашение отрицательной логики. Обычно так и поступают.
Еще пример. Одновременное включение по сигналу разрешения или синхронизации большого числа транзисторов ТТЛ-микросхемы средней или большой интеграции порождает в общем выводе микросхемы мощный скачок тока с крутым фронтом, который при положительном напряжении питания вызывает импульсный подъем потенциала подложки кристалла по отношению к потенциалу общего провода печатной платы амплитудой до 0,1—0,2 В. Если этот процесс вызывается высоким уровнем управляющего сигнала, то подъем потенциала подложки приводит к уменьшению фактической амплитуды разрешающего сигнала на входах элементов микросхемы, что может вызвать сбой в работе. Если же разрешающий уровень низкий, то при подъеме потенциала подложки амплитуда сигнала, фактически действующая на элементы микросхемы, даже увеличивается. Поэтому в микросхемах средней и большой интеграции входы разрешения, синхронизации и т. п., несмотря на то что по ним поступают сигналы утверждающего, единичного смысла, часто управляются не высоким, а низким уровнем, т. е. работают по соглашению отрицательной логики.
23. Способы включения биполярного транзистора.
Любая схема включения транзистора характеризуется двумя основными показателями:
Коэффициент усиления по току Iвых/Iвх.
Входное сопротивление Rвх=Uвх/Iвх
С
хема
включения с общей базой
Усилитель с общей базой.
Среди всех трех конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Фаза сигнала не инвертируется.
Коэффициент усиления по току: Iвых/Iвх=Iк/Iэ=α [α<1]
Входное сопротивление Rвх=Uвх/Iвх=Uбэ/Iэ.
Входное сопротивление для схемы с общей базой мало и не превышает 100 Ом для маломощных транзисторов, так как входная цепь транзистора при этом представляет собой открытый эмиттерный переход транзистора.
Достоинства:
Хорошие температурные и частотные свойства.
Высокое допустимое напряжение
Недостатки схемы с общей базой :
Малое усиление по току, так как α < 1
Малое входное сопротивление
Два разных источника напряжения для питания.
С
хема
включения с общим эмиттером
Коэффициент усиления по току: Iвых/Iвх=Iк/Iб=Iк/(Iэ-Iк) = α/(1-α) = β [β>>1]
Входное сопротивление: Rвх=Uвх/Iвх=Uбэ/Iб
Достоинства:
Большой коэффициент усиления по току
Большой коэффициент усиления по напряжению
Наибольшее усиление мощности
Можно обойтись одним источником питания
Выходное переменное напряжение инвертируется относительно входного.
Недостатки:
Худшие температурные и частотные свойства по сравнению со схемой с общей базой
С
хема
с общим коллектором
Коэффициент усиления по току: Iвых/Iвх=Iэ/Iб=Iэ/(Iэ-Iк) = 1/(1-α) = β [β>>1]
Входное сопротивление: Rвх=Uвх/Iвх=(Uбэ+Uкэ)/Iб
Достоинства:
Большое входное сопротивление
Малое выходное сопротивление
Недостатки:
Коэффициент усиления по напряжению меньше 1.
Схему с таким включением называют «эмиттерным повторителем»