
- •1.Расчитать минимальный коэффициент усиления выходного транзистора простейшего ттл вентиля.
- •2. Электрическая схема ттл вентиля со сложным инвертором.
- •3.Что такое таблица истинности. Функциональный контроль микросхем.
- •4. Способы включения биполярного транзистора как диода.
- •5.Принцип работы транзистора Шоттки.
- •7.Что такое радиочастотная идентификация. Диапазоны используемых частот в Европе.
- •8.Как влияет облучение на характеристики р-n перехода.
- •9.Что такое пинч-резистор?
- •10.Масштабирование. Основные принципы
- •11. Статическое электричество. Схема защиты от статического электричества.
- •12. Принцип работы транзистора в инверсном режиме
- •13. Первый и второй закон Мура.
- •14.Что такое потенциальные и импульсные схемы. Привести примеры.
- •15.Тиристор. Принцип работы
- •16.Туннельный диод Принцип работы.
- •17.Метод измерения динамических параметров интегральных схем.
- •18.Типы конденсаторов в интегральном исполнении
- •19. Виды полузаказных интегральных схем
- •Вентильные матрицы
- •2. Ис на основе готовых ячеек
- •1. Биполярные вентильныематрицы
- •20. Конструктивные и тепловые ограничения при проектировании интегральных схем
- •21. Модель Эберса-Молла биполярного транзистора
- •22. «Положительная» и «отрицательная» логика. Привести примеры
- •23. Способы включения биполярного транзистора.
- •24. Полевой транзистор. Принцип действия
- •25. Полевой транзистор с управляющим p-n переходом
- •26. Типы помех в интегральных схемах
- •27. Биполярный транзистор. Принцип работы
- •28. Зависимость потребляемой мощности кмоп вентиля от частоты.
- •29.Современные системы автоматической идентификации.
- •30. Формула вольт-амперной характеристики диода.
- •31. Полупроводниковые приборы с n - образными характеристиками.
- •32. Система параметров логических элементов.
- •34. Полупроводниковые приборы с отрицательным сопротивлением.
- •35. Способы включения биполярного транзистора и их конструктивные решения.
- •36. Конструкция и принцип работы многоэмиттерного транзистора.
- •37. Закон Мура. Степень интеграции интегральных схем.
- •38.Многослойные полупроводниковые структуры
- •39.Инжекционный вентиль. Принцип работы.
- •40.Расчет параметров интегрального резистора.
- •41.Формула коэффициента усиления биполярного транзистора.
- •42. Степень насыщения биполярного транзистора.
- •43. Чем отличается реальная вольтамперная характеристика р-п перехода от теоретической.
- •44. Как называются приборы, основанные на контакте металл-полупроводник.
- •45. Начертите схемы включения транзистора с общей базой, с общим эмиттером и с общим коллектором.
- •46. Нарисуйте схему устройства транзистора с изолированным затвором и объясните его принцип действия.
- •47. Объясните принцип действия динистора.
- •48. Назовите параметры тиристоров.
- •49.Что такое заказные и полузаказные интегральные схемы.
- •53. Нарисуйте передаточную характеристику логического вентиля, выполняющего функцию «инверсия».
- •Вопросы спиэ js_Edition
- •44. Как называются приборы, основанные на контакте металл-полупроводник.
- •45. Начертите схемы включения транзистора с общей базой, с общим эмиттером и с общим коллектором.
- •46. Нарисуйте схему устройства транзистора с изолированным затвором и объясните его принцип действия.
- •47. Объясните принцип действия динистора.
- •48. Назовите параметры тиристоров.
- •49.Что такое заказные и полузаказные интегральные схемы.
- •50.3Ависимость емкости конденсатора (мдп - процесс) от полярности подаваемого напряжения
- •51. Зависимость емкости конденсатора (мдп - процесс) от частоты.
- •52. Зависимость емкости конденсатора (биполярный тех.Процесс) от напряжения.
- •53. Нарисуйте передаточную характеристику логического вентиля, выполняющего функцию «инверсия».
- •54.Нарисуйте график зависимости мощности потребления от частоты для кмоп-схем.
- •54.Нарисуйте вертикальную структуру биполярного транзистора с диодом Шоттки.
- •55.Типы помех в интегральных схемах.
- •56.Принцип построения кольцевого генератора.
- •57.Принцип работы логического вентиля с тремя устойчивыми состояниями.
- •58.Нарисуйте вертикальную структуру р - п - р транзистора.
- •59. Нарисуйте вертикальную структуру р - п - р транзистора и п-р-п транзисторов изготовленных в одном техпроцессе.
- •60.Влияние температуры на параметры биполярного транзистора.
1.Расчитать минимальный коэффициент усиления выходного транзистора простейшего ттл вентиля.
Слева ттл вентиль (И-не) справа, его передаточная характеристика. Минимамальный коэффициент усиления, для транзистора VT5 – при котором он равен b= Ik / Iб1
2. Электрическая схема ттл вентиля со сложным инвертором.
А- с простым, Б – сложным инвертором
Пример работы:
Если же на все эмиттеры транзистора VT1 подать напряжение Uвх1, равное примерно половине напряжения питания Uп, то эмиттерные токи VT1резко сократятся (входные токи лог.1), а базовый ток уйдет в коллектор, создавая на базе транзистора VT2 потенциал, близкий к потенциалу Uп. В таком случае транзистор VT2 фазоинверсного каскада откроется, запирая при этом VT4 и отпирая VT5. Включенный в коллекторную цепь VT4 диод VD5 создает при отпирании транзистора VT5 между базой и эмиттером VT4 разность потенциалов, меньшую напряжения отпирания VT4. Иными словами разность потенциалов между базой транзистора VT4 и выходом логического элемента распределяется между участком база-эмиттер VT4 и диодом VD5. Таким образом за счет полного запирания транзистора эмиттерного повторителя и насыщения транзистора VT5 на выходе ИС формируется уровень напряжения примерно равный 0.4В. Это напряжение есть напряжение насыщения транзистора VT5 и является выходным напряжением логического 0 Uвых0.
3.Что такое таблица истинности. Функциональный контроль микросхем.
Таблица истинности - таблица, в которой перечислены состояния на выходе при любой комбинации входных сигналов.
Функциональный контроль. Используется для проверки интегральных схем с
высокой степенью интеграции и включает в себя проведение статистических и
динамических измерений на базе контрольной тестовой таблицы, составленной,
например, с помощью ЭВМ с учетом минимизации количества входных кодовых
комбинаций. Функциональный контроль позволяет проводить проверку больших
интегральных микросхем в условиях, близких к эксплуатационным.
Принцип работы автоматизированной системы функционального контроля
интегральных микросхем с применением ЦВМ состоит в следующем.
По команде от ЦВМ в счетчик адреса памяти записывается начальный адрес
входных тестовых комбинаций, а в регистр адреса контролируемой тестовой
комбинации – соответствующий адрес. На компаратор подается от ЦВМ ожидаемая
комбинация входных сигналов. Несколько разрядов запоминающего устройства
входных тестовых комбинаций выделено для хранения определенного числа циклов
тактового генератора В течение периода хранения на входные выводы
интегральной схемы должна подаваться одна и та же тестовая комбинация. Число
циклов в обратном коде переписывается в счетчик повторений тестовых
комбинаций, на счетный вход которого поступают тактовые импульсы. При его
заполнении увеличивается содержимое счетчика адреса памяти и опрашивается
запоминающее устройство входных тестов по новому адресу. При равенстве адреса
счетчика памяти и регистра контролируемой комбинации прекращается подача
тактовых импульсов, компаратор стробируется по времени, фиксируя входные
импульсы последней тестовой комбинации.
Путем записи в регистр адреса контролируемой комбинации различных адресов
проверяется интегральная микросхема с динамической логикой на всех тестовых
комбинациях. Кроме указанных элементов система включает в себя схему
сравнения, схему выдачи входных воздействий и вентиль.
Наиболее эффективными методами контроля качества соединений являются
испытания на механическую прочность и металлографический анализ.