- •080100.62 «Экономика»
- •Пояснительная записка
- •Методические рекомендации по выполнению заданий контрольной работы
- •Тема 1.
- •Алгебра событий
- •Классическое определение вероятности
- •Относительная частота. Статистическое определение вероятности
- •Основные формулы комбинаторики
- •Рекомендации к решению и оформлению задач по данной теме
- •Тема 2.
- •Теорема сложения вероятностей
- •Теорема умножения вероятностей
- •Вероятность появления хотя бы одного события
- •Геометрическая вероятность
- •Рекомендации к решению и оформлению задач по данной теме
- •Тема 3.
- •Формула полной вероятности
- •Формула Байеса (теорема гипотез)
- •Приближение Пуассона для схемы Бернулли
- •Рекомендации к решению и оформлению задач по данной теме
- •Тема 4.
- •Дискретные случайные величины
- •Распределения дискретной случайной величины
- •Тема 5.
- •Экспоненциальное распределение
- •Тема 6.
- •Математическое ожидание.
- •1. Биномиальное распределение.
- •2. Закон Пуассона.
- •3. Равномерное распределение.
- •4. Нормальное распределение.
- •Тема 7.
- •Задания контрольной работы по дисциплине «Теория вероятностей и математическая статистика» Вариант № 1
- •Вариант № 2
- •Вариант № 3
- •Вариант № 4
- •Вариант № 5
- •Вариант № 6
- •Вариант № 7
- •Вариант № 8
- •Вариант № 9
- •Вариант № 10
- •Литература
Вариант № 3
Предположим, что 5% всех мужчин и 0.25% всех женщин дальтоники. Наугад выбранное лицо оказалось дальтоником. Какова вероятность, что это мужчина? (Считать, что мужчин и женщин одинаковое число).
Бросается две уравновешенные игральные кости. Какова вероятность, что на них выпадут различные числа?
Пусть в каждом цикле обзора радиолокатора цель может быть обнаружена с вероятностью 0.5. И пусть обнаружение в каждом цикле происходит независимо от других циклов. Определить с какой вероятностью цель будет обнаружена за 3 цикла
Пусть вероятность того, что денежный автомат при опускании одной монеты сработает правильно, равна 0,95. Оценить вероятность того, что при 2 000 опусканиях монет количество случаев правильной работы автомата будет заключено в границах от 1 860 до 1 940 (включительно).
Найти функцию распределения числа попаданий в цель, если стрелком произведено шесть выстрелов, а вероятность попадания при одном выстреле равна 0,2. Пользуясь этой функцией, вычислить вероятность того, что цель будет поражена не менее одного, но не меньше пяти раз.
Деталь проходит три операции обработки. Вероятность того, что она окажется бракованной после первой операции, равна 0,02; после второй – 0,03; после третьей – 0,02. Найти вероятность того, что деталь будет бракованной после трех операций, предполагая, что появление брака на отдельных операциях независимые события.
Какова вероятность того, что наудачу поставленная точка в данном круге (радиус 2 см) окажется внутри вписанного в него квадрата.
Найти вероятность того, что из 500 посеянных семян не взойдет 130, если всхожесть оценивается вероятностью 0,75.
В классе имеется 12 компьютеров. Вероятность того, что компьютер будет занят студентами в течение дня равна 0,8. Найти вероятность нормальной работы компьютерного класса в ближайший день, если для этого необходимо, чтобы были заняты хотя бы пять компьютеров.
Вероятность выигрыша по одному билету лотереи равна 1/7. Какова вероятность того, что лицо, имеющее шесть билетов выиграет хотя бы по одному билету.
Вариант № 4
На сборку поступают детали с двух автоматов. Первый дает в среднем 0.2% брака, второй – 0.1%. Найти вероятность попадания на сборку бракованной детали, если с первого автомата поступило 2000 деталей, а со второго – 3000.
Контролю подлежит 250 деталей, из которых 5 – нестандартных. Какова вероятность того, что наудачу взятая для контроля деталь окажется: а) нестандартной; б) стандартной. Решить, пользуясь лишь определением вероятности.
Из 60 вопросов, входящих в экзаменационные билеты, студент подготовил 50. Найти вероятность того, что взятый наудачу студентом билет, содержащий два вопроса, будет состоять из подготовленных им вопросов. Решить, пользуясь лишь определением вероятности.
Количество воды, необходимое в течение суток предприятию для технических нужд, является случайной величиной, математическое ожидание которой равно 125 м3. Оценить вероятность того, что в ближайшие сутки расход воды на предприятии превысит 500 м3.
Вычислить вероятность всех возможных появлений герба при пяти бросаниях монеты. Построить график этого распределения. Как оно называется? Найти математическое ожидание и дисперсию случайной величины.
При приеме партии изделий подвергается проверке половина изделий. Условие приемки – наличие брака в выборке менее 2%. Найти вероятность того, что партия из 100 изделий, содержащая 5% брака, будет принята.
Два лица договорились встретиться в определенном месте между 10 и 11 часами и договорились, что пришедший первым ждет другого в течение 15 минут, после чего уходит. Найти вероятность их встречи, если приход каждого в течение указанного времени может произойти в любое время и моменты их ухода независимы.
Вероятность попадания в цель при одном выстреле равна 0,4. Найти вероятность 100 попаданий из 320 выстрелов.
Вероятность изготовления стандартной детали равна 0,9. Найти вероятность того, что среди 10 деталей окажется не более одной стандартной.
В классе имеется 12 компьютеров. Вероятность того, что компьютер будет занят студентами в течение дня равна 0,8. Найти вероятность нормальной работы компьютерного класса в ближайший день, если для этого необходимо, чтобы были заняты не менее восьми компьютеров.
