- •Теоретическая механика лекция 1
- •Тема 1.1. Основные понятия и аксиомы статики
- •Введение
- •Аксиомы статики
- •Связи и реакции связей
- •Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей геометрическим способом
- •Решение задач на равновесие геометрическим способом
- •Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей аналитическим способом
- •Проекция силы на ось
- •Определение равнодействующей системы сил аналитическим способом
- •Условия равновесия плоской системы сходящихся сил в аналитической форме
- •Тема 1.3. Пара сил и момент силы относительно точки
- •Пара сил, момент пары сил
- •Момент силы относительно точки.
- •Тема 1.4. Плоская система произвольно расположенных сил
- •Теорема Пуансо о параллельном переносе сил
- •Приведение к точке плоской системы произвольно расположенных сил
- •Влияние точки приведения
- •Частные случаи приведения системы сил к точке
- •Условие равновесия произвольной плоской системы сил
- •Тема 1.4. Балочные системы. Определение реакций опор и моментов Защемления
- •Виды нагрузок и разновидности опор
- •Момент силы относительно оси
- •Пространственная сходящаяся система сил
- •Произвольная пространственная система сил
- •Сила тяжести
- •Точка приложения силы тяжести
- •Центр тяжести однородных плоских тел (плоских фигур)
- •Определение координат центра тяжести плоских фигур
- •Тема 1.7. Основные понятия кинематики. Кинематика точки
- •Основные кинематические параметры
- •Скорость движения
- •Ускорение точки
- •Тема 1.8. Кинематика точки
- •Анализ видов и кинетических параметров движений
- •Равнопеременное движение
- •Неравномерное движение
- •Кинематические графики
- •Определение скорости и ускорения точки при координатном способе задания ее движения
- •Тема 1.9. Простейшие движения твердого тела
- •Поступательное движение
- •Вращательное движение
- •Частные случаи вращательного движения
- •Скорости и ускорения точек вращающегося тела
- •Тема 1.10. Сложное движение точки. Сложное движение твердого тела
- •Основные определения
- •Плоскопараллельное движение твердого тела
- •Метод разложения сложного движения на поступательное и вращательное
- •Метод определения мгновенного центра скоростей
- •Тема 1.12. Основные понятия и аксиомы динамики. Понятие о трении
- •Содержание и задачи динамики
- •Аксиомы динамики
- •Понятие о трении. Виды трения
- •Трение качения
- •Тема 1.13. Движение материальной точки. Метод кинетостатики
- •Свободная и несвободная точки
- •Сила инерции
- •Принцип кинетостатики (принцип Даламбера)
- •Порядок решения задач с использованием принципа Даламбера
- •Примеры решений задач
- •Тема 1.14. Работа и мощность
- •Работа силы тяжести
- •Тема 1.14. Работа и мощность. Коэффициент полезного действия
- •Мощность
- •Мощность при вращении
- •Коэффициент полезного действия
- •Тема 1.15. Общие теоремы динамики
- •Теорема об изменении количества движения
- •Теорема об изменении кинетической энергии
- •Основы динамики системы материальных точек
- •Основное уравнение динамики при поступательном движении тела
- •Основное уравнение динамики вращающегося тела
- •Тема 2.1. Основные положения.
- •Напряжения
- •Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Примеры построения эпюры продольных сил
- •Геометрические характеристики плоских сечений
- •Центробежный момент инерции
- •Осевые моменты инерции
- •Моменты инерции простейших сечений
- •Полярный момент инерции круга
- •Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Факторов при изгибе методом сечения Полученное выражение можно обобщить
- •Тема 2.6. Понятие о касательных напряжениях
- •Поперечный изгиб. Внутренние силовые факторы. Напряжения
- •Тема 2.7. Сочетание основных деформаций. Гипотезы прочности
- •Понятие о сложном деформированном состоянии
- •Расчет круглого бруса на изгиб с кручением
- •Тема 2.10. Устойчивость сжатых стержней. Основные положения
- •Расчет на устойчивость
- •Способы определения критической силы Расчет по формуле Эйлера
Геометрические характеристики плоских сечений
Иметь представление о физическом смысле и порядке определения осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции.
Знать формулы моментов инерции простейших сечений, способы вычисления моментов инерции при параллельном переносе осей.
При растяжении, сжатии, смятии и сдвиге деталь сопротивляется деформации всем сечением одинаково. Здесь геометрической характеристикой сечения является площадь.
При кручении и изгибе сечение сопротивляется деформации не одинаково, при расчетах напряжений появляются другие геометрические характеристики сечения, влияющие на сопротивления сечения деформированию.
Статический момент площади сечения
Рассмотрим произвольное сечение (рис. 25.1).
Если разбить сечение на бесконечно малые площадки dA и умножить каждую площадку на расстояние до оси координат и проинтегрировать полученное выражение, получим статический момент площади сечения:
1)
относительно оси Ох
;
Рис. 25.1
2) относительно оси Оу
Для симметричного сечения статические моменты каждой половины площади равны по величине и имеют разный знак. Следовательно, статический момент относительно оси симметрии равен нулю.
Статический момент используется при определении положения
дентра тяжести сечения:
Формулы для определения положения
центра тяжести можно зависать в виде
Центробежный момент инерции
Центробежным моментом инерции сечения
называется взятая ко всей площади
сумма произведений элементарных площадок
на обе координаты:
Центробежный момент инерции может быть положительным, отрицательным и равным нулю. Центробежный момент инерции относительно осей, проходящих через центр тяжести сечения, равен кулю.
Оси, относительно которых центробежный момент равен нулю, Называются главными. Главные оси, проходящие через центр тяжести, называют главными центральными осями сечения.
Осевые моменты инерции
Осевым моментом инерции сечения относительно некоторой реи, лежащей в этой же плоскости, называется взятая по всей площади сумма произведений элементарных площадок на квадрат их расстояния до этой оси:
1) осевой момент инерции сечения относительно оси Ох
2) осевой момент инерции сечения относительно оси Oy
Полярный момент инерции сечения
Полярным моментом инерции сечения
относительно некоторой точки (полюса)
называется взятая по всей площади сумма
произведений элементарных площадок
на квадрат их расстояния до этой точки:
где р — расстояние до полюса (центра поворота) (рис. 25.1).
Поскольку ρ2 = х2 + у2, получим: полярный момент инерции сечения равен сумме осевых:
Осевые моменты инерции характеризуют сопротивление сечения повороту относительно соответствующей оси.
Полярный момент инерция характеризует сопротивление сечения повороту вокруг полюса (начала координат). Единицы измерения моментов инерции: м4; см4; мм4.
Моменты инерции простейших сечений
Осевые моменты инерции прямоугольника (рис. 25.2)
П
редставим
прямоугольник высотой h
и шириной b
в виде сечения,
составленного из бесконечно
тонких полос. Запишем площадь такой
полосы:. bdy = dA.
Подставим в формулу осевого момента;
инерции относительно оси Ох:
Рис. 25. 2
По аналогии, если разбить прямоугольник
на вертикальные полосы, рассчитать
площади полос и подставить в формулу
для oceвого
момента инерции относительно оси Оу,
получим
Очевидно, что при h > b сопротивление повороту относительно оси Ох больше, чем относительно Оу.
Для квадрата: h
= b;
