- •Теоретическая механика лекция 1
- •Тема 1.1. Основные понятия и аксиомы статики
- •Введение
- •Аксиомы статики
- •Связи и реакции связей
- •Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей геометрическим способом
- •Решение задач на равновесие геометрическим способом
- •Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей аналитическим способом
- •Проекция силы на ось
- •Определение равнодействующей системы сил аналитическим способом
- •Условия равновесия плоской системы сходящихся сил в аналитической форме
- •Тема 1.3. Пара сил и момент силы относительно точки
- •Пара сил, момент пары сил
- •Момент силы относительно точки.
- •Тема 1.4. Плоская система произвольно расположенных сил
- •Теорема Пуансо о параллельном переносе сил
- •Приведение к точке плоской системы произвольно расположенных сил
- •Влияние точки приведения
- •Частные случаи приведения системы сил к точке
- •Условие равновесия произвольной плоской системы сил
- •Тема 1.4. Балочные системы. Определение реакций опор и моментов Защемления
- •Виды нагрузок и разновидности опор
- •Момент силы относительно оси
- •Пространственная сходящаяся система сил
- •Произвольная пространственная система сил
- •Сила тяжести
- •Точка приложения силы тяжести
- •Центр тяжести однородных плоских тел (плоских фигур)
- •Определение координат центра тяжести плоских фигур
- •Тема 1.7. Основные понятия кинематики. Кинематика точки
- •Основные кинематические параметры
- •Скорость движения
- •Ускорение точки
- •Тема 1.8. Кинематика точки
- •Анализ видов и кинетических параметров движений
- •Равнопеременное движение
- •Неравномерное движение
- •Кинематические графики
- •Определение скорости и ускорения точки при координатном способе задания ее движения
- •Тема 1.9. Простейшие движения твердого тела
- •Поступательное движение
- •Вращательное движение
- •Частные случаи вращательного движения
- •Скорости и ускорения точек вращающегося тела
- •Тема 1.10. Сложное движение точки. Сложное движение твердого тела
- •Основные определения
- •Плоскопараллельное движение твердого тела
- •Метод разложения сложного движения на поступательное и вращательное
- •Метод определения мгновенного центра скоростей
- •Тема 1.12. Основные понятия и аксиомы динамики. Понятие о трении
- •Содержание и задачи динамики
- •Аксиомы динамики
- •Понятие о трении. Виды трения
- •Трение качения
- •Тема 1.13. Движение материальной точки. Метод кинетостатики
- •Свободная и несвободная точки
- •Сила инерции
- •Принцип кинетостатики (принцип Даламбера)
- •Порядок решения задач с использованием принципа Даламбера
- •Примеры решений задач
- •Тема 1.14. Работа и мощность
- •Работа силы тяжести
- •Тема 1.14. Работа и мощность. Коэффициент полезного действия
- •Мощность
- •Мощность при вращении
- •Коэффициент полезного действия
- •Тема 1.15. Общие теоремы динамики
- •Теорема об изменении количества движения
- •Теорема об изменении кинетической энергии
- •Основы динамики системы материальных точек
- •Основное уравнение динамики при поступательном движении тела
- •Основное уравнение динамики вращающегося тела
- •Тема 2.1. Основные положения.
- •Напряжения
- •Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Примеры построения эпюры продольных сил
- •Геометрические характеристики плоских сечений
- •Центробежный момент инерции
- •Осевые моменты инерции
- •Моменты инерции простейших сечений
- •Полярный момент инерции круга
- •Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Факторов при изгибе методом сечения Полученное выражение можно обобщить
- •Тема 2.6. Понятие о касательных напряжениях
- •Поперечный изгиб. Внутренние силовые факторы. Напряжения
- •Тема 2.7. Сочетание основных деформаций. Гипотезы прочности
- •Понятие о сложном деформированном состоянии
- •Расчет круглого бруса на изгиб с кручением
- •Тема 2.10. Устойчивость сжатых стержней. Основные положения
- •Расчет на устойчивость
- •Способы определения критической силы Расчет по формуле Эйлера
Тема 1.14. Работа и мощность. Коэффициент полезного действия
Иметь представление о мощности при прямолинейном и криволинейном перемещениях, о мощности полезной и затраченной, о коэффициенте полезного действия.
Знать зависимости для определения мощности при поступательном и вращательном движениях, КПД.
Уметь рассчитать мощность с учетом потерь на трение и сил инерции.
Мощность
Для характеристики работоспособности и быстроты совершения работы введено понятие мощности.
Мощность — работа, выполненная в единицу времени:
Единицы измерения мощности: ватты, киловатты,
Мощность при поступательном движении (рис. 16.1)
Учитывая, что S / t = Vср получи
Рис. 16.1
P = Fvcp cos а,
где F — модуль силы, действующей на тело;
vcp — средняя скорость движения тела.
Средняя мощность при поступательном движении равна произведению модуля силы на среднюю скорость перемещения и на косинус угла между направлениями силы и скорости.
Мощность при вращении
Рис. 16.2
Тело движется по дуге радиуса из точки М1 в точку М2
М1М2 = φr
Работа силы
W
= Mвр φ
Mвр = Ft r
Mвр – вращающий момент
P = Mвр φ /t
Учитывая, что , φ /t = ωср получим
Р = Мврωср,
где ωср — средняя угловая скорость.
Мощность силы при вращении равна произведению вращающее го момента на среднюю угловую скорость.
Если при выполнении работы усилие машины и скорость движения меняются, можно определить мощность в любой момент времени, зная значения усилия и скорости в данный момент.
Коэффициент полезного действия
Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений.
Таким образом, машина (механизм) кроме полезной работы совершает еще и дополнительную работу.
Отношение полезной работы к полной работе или полезной мощности ко всей затраченной мощности называется коэффициентом полезного действия (КПД):
Полезная работа (мощность) расходуется на движение с заданной скоростью и определяется по формулам:
Затраченная мощность больше полезной на величину мощности, идущей на преодоление трения в звеньях машины, на утечки и тому подобные потери.
Чем выше КПД, тем совершеннее машина.
ЛЕКЦИЯ 17
Тема 1.15. Общие теоремы динамики
Иметь представление о понятиях «импульс силы», «количество движения», «кинетическая энергия», о системе материальных точек, о внутренних и внешних силах системы.
Знать основные теоремы динамики, основные уравнения динамики при поступательном и вращательном движениях твердого тела, формулы для расчета моментов инерции некоторых однородных твердых тел.
Уметь определять параметры движения с помощью теорем динамики.
Теорема об изменении количества движения
Количеством движения материальной точки называется векторная величина, равная произведению массы точки на ее скорость mv.
Вектор количества движения совпадает по направлению с вектором скорости.
Единица измерения [mv] = кг м/с.
Произведение постоянного вектора силы на некоторый промежуток времени, в течение которого действует эта сила, называется импульсом силы Ft .
Вектор импульса силы по направлению совпадает с вектором силы. [Ft] = Hc = кг м/с
Использовав основное уравнение динамики, после преобразования можно получить соотношение между количеством движения и импульсом силы (рис. 17.1).
Проинтегрируем обе части равенства:
Полученное соотношение выражает теорему об изменении количества движения точки:
Изменение количества движения точки за некоторый промежуток времени равно импульсу силы, действующему на точку в течение того же промежутка времени.
