- •Теоретическая механика лекция 1
- •Тема 1.1. Основные понятия и аксиомы статики
- •Введение
- •Аксиомы статики
- •Связи и реакции связей
- •Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей геометрическим способом
- •Решение задач на равновесие геометрическим способом
- •Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей аналитическим способом
- •Проекция силы на ось
- •Определение равнодействующей системы сил аналитическим способом
- •Условия равновесия плоской системы сходящихся сил в аналитической форме
- •Тема 1.3. Пара сил и момент силы относительно точки
- •Пара сил, момент пары сил
- •Момент силы относительно точки.
- •Тема 1.4. Плоская система произвольно расположенных сил
- •Теорема Пуансо о параллельном переносе сил
- •Приведение к точке плоской системы произвольно расположенных сил
- •Влияние точки приведения
- •Частные случаи приведения системы сил к точке
- •Условие равновесия произвольной плоской системы сил
- •Тема 1.4. Балочные системы. Определение реакций опор и моментов Защемления
- •Виды нагрузок и разновидности опор
- •Момент силы относительно оси
- •Пространственная сходящаяся система сил
- •Произвольная пространственная система сил
- •Сила тяжести
- •Точка приложения силы тяжести
- •Центр тяжести однородных плоских тел (плоских фигур)
- •Определение координат центра тяжести плоских фигур
- •Тема 1.7. Основные понятия кинематики. Кинематика точки
- •Основные кинематические параметры
- •Скорость движения
- •Ускорение точки
- •Тема 1.8. Кинематика точки
- •Анализ видов и кинетических параметров движений
- •Равнопеременное движение
- •Неравномерное движение
- •Кинематические графики
- •Определение скорости и ускорения точки при координатном способе задания ее движения
- •Тема 1.9. Простейшие движения твердого тела
- •Поступательное движение
- •Вращательное движение
- •Частные случаи вращательного движения
- •Скорости и ускорения точек вращающегося тела
- •Тема 1.10. Сложное движение точки. Сложное движение твердого тела
- •Основные определения
- •Плоскопараллельное движение твердого тела
- •Метод разложения сложного движения на поступательное и вращательное
- •Метод определения мгновенного центра скоростей
- •Тема 1.12. Основные понятия и аксиомы динамики. Понятие о трении
- •Содержание и задачи динамики
- •Аксиомы динамики
- •Понятие о трении. Виды трения
- •Трение качения
- •Тема 1.13. Движение материальной точки. Метод кинетостатики
- •Свободная и несвободная точки
- •Сила инерции
- •Принцип кинетостатики (принцип Даламбера)
- •Порядок решения задач с использованием принципа Даламбера
- •Примеры решений задач
- •Тема 1.14. Работа и мощность
- •Работа силы тяжести
- •Тема 1.14. Работа и мощность. Коэффициент полезного действия
- •Мощность
- •Мощность при вращении
- •Коэффициент полезного действия
- •Тема 1.15. Общие теоремы динамики
- •Теорема об изменении количества движения
- •Теорема об изменении кинетической энергии
- •Основы динамики системы материальных точек
- •Основное уравнение динамики при поступательном движении тела
- •Основное уравнение динамики вращающегося тела
- •Тема 2.1. Основные положения.
- •Напряжения
- •Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Примеры построения эпюры продольных сил
- •Геометрические характеристики плоских сечений
- •Центробежный момент инерции
- •Осевые моменты инерции
- •Моменты инерции простейших сечений
- •Полярный момент инерции круга
- •Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Факторов при изгибе методом сечения Полученное выражение можно обобщить
- •Тема 2.6. Понятие о касательных напряжениях
- •Поперечный изгиб. Внутренние силовые факторы. Напряжения
- •Тема 2.7. Сочетание основных деформаций. Гипотезы прочности
- •Понятие о сложном деформированном состоянии
- •Расчет круглого бруса на изгиб с кручением
- •Тема 2.10. Устойчивость сжатых стержней. Основные положения
- •Расчет на устойчивость
- •Способы определения критической силы Расчет по формуле Эйлера
Понятие о трении. Виды трения
Трение — сопротивление, возникающее при движении одного шероховатого тела по поверхности другого. При скольжении тел возникает трение скольжения, при качении — трение качения. Природа сопротивлений движению в разных случаях различна.
Трение скольжения
Причина — механическое зацепление выступов. Сила сопротивления движению при скольжении называется силой трения скольжения (рис. 13.За).
Законы трения скольжения:
1. Сила трения скольжения прямо пропорциональна силе нормального давления
FТр = Ff = fR,
где R — сила нормального давления, направлена перпендикулярно опорной поверхности;
f — коэффициент трения скольжения.
В случае движения тела по наклонной плоскости (рис. 13.36)
R = G cos α
где α — угол наклона плоскости к горизонту.
Сила трения всегда направлена в сторону, обратную направлению движения.
2. Сила трения меняется от нуля до некоторого максимального значения, называемого силой трения покоя (статическое трение):
0 < Ff <=Ff0
Ff0— статическая сила трения (сила трения покоя).
3. Сила трения при движении меньше силы трения покоя Сила трения при движении называется динамической силой трения (Ff)
Поскольку сила нормального давления, зависящая от веса и направления опорной поверхности, не меняется, то различают статический и динамический коэффициенты трения:
Ff = f R; Ff0 = f0R.
Коэффициент трения скольжения зависит от следующих факторов:
— от материала: материалы делятся на фрикционные (с большим коэффициентом трения) и антифрикционные (с малым коэффициентом трения), например f = 0,14-0,15 (при скольжении стали по стали всухую), f = 0,24-0,3 (при скольжении стали по текстолиту);— от наличия смазки, например f — 0,04-0,05 (при скольжении стали по стали со смазкой);
— от скорости взаимного перемещения.
Трение качения
Сопротивление при качении связано с взаимной деформацией грунта и колеса и значительно меньше трения скольжения.
Обычно считают грунт мягче колеса, тогда в основном деформируется грунт, и в каждый момент колесо должно перекатываться через выступ грунта. Для равномерного качения колеса необходимо прикладывать силу Fдв (рис. 13.4).
Условие качения колеса состоит в том, что движущийся момент должен быть не меньше момента сопротивления:
где k — максимальное значение плеча (половина колеи) принимается за коэффициент трения качения, размерность — сантиметры.
Ориентировочные значения k (определяются экспериментально):
сталь по стали — к = 0,005 см;
резиновая шина по шоссе — к = 0,24 см.
ЛЕКЦИЯ 14
Тема 1.13. Движение материальной точки. Метод кинетостатики
Иметь представление о свободных и несвободных материальных точках, о силах инерции, об использовании силы инерции для решения технических задач. Знать формулы для расчета силы инерции при поступательном и вращательном движениях, знать принцип Даламбера и уметь определять параметры движения с использованием законов динамики и метода кинетостатики.
