- •Теоретическая механика лекция 1
- •Тема 1.1. Основные понятия и аксиомы статики
- •Введение
- •Аксиомы статики
- •Связи и реакции связей
- •Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей геометрическим способом
- •Решение задач на равновесие геометрическим способом
- •Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей аналитическим способом
- •Проекция силы на ось
- •Определение равнодействующей системы сил аналитическим способом
- •Условия равновесия плоской системы сходящихся сил в аналитической форме
- •Тема 1.3. Пара сил и момент силы относительно точки
- •Пара сил, момент пары сил
- •Момент силы относительно точки.
- •Тема 1.4. Плоская система произвольно расположенных сил
- •Теорема Пуансо о параллельном переносе сил
- •Приведение к точке плоской системы произвольно расположенных сил
- •Влияние точки приведения
- •Частные случаи приведения системы сил к точке
- •Условие равновесия произвольной плоской системы сил
- •Тема 1.4. Балочные системы. Определение реакций опор и моментов Защемления
- •Виды нагрузок и разновидности опор
- •Момент силы относительно оси
- •Пространственная сходящаяся система сил
- •Произвольная пространственная система сил
- •Сила тяжести
- •Точка приложения силы тяжести
- •Центр тяжести однородных плоских тел (плоских фигур)
- •Определение координат центра тяжести плоских фигур
- •Тема 1.7. Основные понятия кинематики. Кинематика точки
- •Основные кинематические параметры
- •Скорость движения
- •Ускорение точки
- •Тема 1.8. Кинематика точки
- •Анализ видов и кинетических параметров движений
- •Равнопеременное движение
- •Неравномерное движение
- •Кинематические графики
- •Определение скорости и ускорения точки при координатном способе задания ее движения
- •Тема 1.9. Простейшие движения твердого тела
- •Поступательное движение
- •Вращательное движение
- •Частные случаи вращательного движения
- •Скорости и ускорения точек вращающегося тела
- •Тема 1.10. Сложное движение точки. Сложное движение твердого тела
- •Основные определения
- •Плоскопараллельное движение твердого тела
- •Метод разложения сложного движения на поступательное и вращательное
- •Метод определения мгновенного центра скоростей
- •Тема 1.12. Основные понятия и аксиомы динамики. Понятие о трении
- •Содержание и задачи динамики
- •Аксиомы динамики
- •Понятие о трении. Виды трения
- •Трение качения
- •Тема 1.13. Движение материальной точки. Метод кинетостатики
- •Свободная и несвободная точки
- •Сила инерции
- •Принцип кинетостатики (принцип Даламбера)
- •Порядок решения задач с использованием принципа Даламбера
- •Примеры решений задач
- •Тема 1.14. Работа и мощность
- •Работа силы тяжести
- •Тема 1.14. Работа и мощность. Коэффициент полезного действия
- •Мощность
- •Мощность при вращении
- •Коэффициент полезного действия
- •Тема 1.15. Общие теоремы динамики
- •Теорема об изменении количества движения
- •Теорема об изменении кинетической энергии
- •Основы динамики системы материальных точек
- •Основное уравнение динамики при поступательном движении тела
- •Основное уравнение динамики вращающегося тела
- •Тема 2.1. Основные положения.
- •Напряжения
- •Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Примеры построения эпюры продольных сил
- •Геометрические характеристики плоских сечений
- •Центробежный момент инерции
- •Осевые моменты инерции
- •Моменты инерции простейших сечений
- •Полярный момент инерции круга
- •Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Факторов при изгибе методом сечения Полученное выражение можно обобщить
- •Тема 2.6. Понятие о касательных напряжениях
- •Поперечный изгиб. Внутренние силовые факторы. Напряжения
- •Тема 2.7. Сочетание основных деформаций. Гипотезы прочности
- •Понятие о сложном деформированном состоянии
- •Расчет круглого бруса на изгиб с кручением
- •Тема 2.10. Устойчивость сжатых стержней. Основные положения
- •Расчет на устойчивость
- •Способы определения критической силы Расчет по формуле Эйлера
Тема 1.10. Сложное движение точки. Сложное движение твердого тела
Иметь представление о системах координат, об абсолютном, относительном и переносном движениях. Знать разложение сложного движения на относительное и переносное, теорему сложения скоростей. Знать разложение плоскопараллельного движения на поступательное и вращательное, способы определения мгновенного центра скоростей.
Основные определения
Сложным движением считают движение, которое можно разложить на несколько простых. Простыми движениями считают поступательное и вращательное.
Для рассмотрения сложного движения точки выбирают две системы отсчета: подвижную и неподвижную.
Движение точки (тела) относительно неподвижной системы отсчета называют сложным, или абсолютным.
Подвижную систему отсчета обычно связывают с движущимся телом. Движение подвижной системы отсчета относительно неподвижной называют переносным.
Движение материальной точки (тела) по отношению к подвижной системе называют относительным.
Примером может служить движение человека по эскалатору метро. Движение эскалатора — переносное движение, движение человека вниз или вверх по эскалатору — относительное, а движение по отношению к неподвижным стенам станции — сложное (абсолютное) движение.
При решении задач используют теорему о сложении скоростей:
При сложном движении точки абсолютная скорость в каждый момент времени равна геометрической сумме переносной (vе) и относительной (vr) скоростей:
α — угол между векторами vе и vr .
Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются параллельно некоторой неподвижной в рассматриваемой системе отсчета плоскости.
П
лоскопараллельное
движение мож-но изучать, рассматривая
любое плоское сечение тела, параллельное
неподвижной плоскости, называемой
основной (рис.
12.1).
Все точки тела, расположенные на прямой, перпендикулярной к основной плоскости, движутся одинаково.
Плоскопараллельное движение изучается двумя методами: методом разложения сложного движения на поступательное и вращательное и методом мгновенных центров скоростей.
Метод разложения сложного движения на поступательное и вращательное
Плоскопараллельное движение раскладывают на два движения: поступательное вместе с некоторым полюсом и вращательное относительно этого полюса.
Разложение используют для определения скорости любой точки тела, применяя теорему о сложении скоростей (рис. 12.2).
Точка А движется вместе с точкой В, а затем поворачивается вокруг В с угловой скоростью ω , тогда абсолютная скорость точки А будет равна
vA = vB + vAB , vAB = ωr (r = AB)
П
римером
плоскопараллельного движения может
быть движение колеса на прямолинейном
участке дороги (рис. 12.3).
Скорость точки М
vM = ve + vr
ve — скорость центра колеса переносная;
vr — скорость вокруг центра относительная.
у Ох — неподвижная система координат,
у1 О1 х1 — подвижная система координат, связанная с осью колеса.
