- •Теоретическая механика лекция 1
- •Тема 1.1. Основные понятия и аксиомы статики
- •Введение
- •Аксиомы статики
- •Связи и реакции связей
- •Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей геометрическим способом
- •Решение задач на равновесие геометрическим способом
- •Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей аналитическим способом
- •Проекция силы на ось
- •Определение равнодействующей системы сил аналитическим способом
- •Условия равновесия плоской системы сходящихся сил в аналитической форме
- •Тема 1.3. Пара сил и момент силы относительно точки
- •Пара сил, момент пары сил
- •Момент силы относительно точки.
- •Тема 1.4. Плоская система произвольно расположенных сил
- •Теорема Пуансо о параллельном переносе сил
- •Приведение к точке плоской системы произвольно расположенных сил
- •Влияние точки приведения
- •Частные случаи приведения системы сил к точке
- •Условие равновесия произвольной плоской системы сил
- •Тема 1.4. Балочные системы. Определение реакций опор и моментов Защемления
- •Виды нагрузок и разновидности опор
- •Момент силы относительно оси
- •Пространственная сходящаяся система сил
- •Произвольная пространственная система сил
- •Сила тяжести
- •Точка приложения силы тяжести
- •Центр тяжести однородных плоских тел (плоских фигур)
- •Определение координат центра тяжести плоских фигур
- •Тема 1.7. Основные понятия кинематики. Кинематика точки
- •Основные кинематические параметры
- •Скорость движения
- •Ускорение точки
- •Тема 1.8. Кинематика точки
- •Анализ видов и кинетических параметров движений
- •Равнопеременное движение
- •Неравномерное движение
- •Кинематические графики
- •Определение скорости и ускорения точки при координатном способе задания ее движения
- •Тема 1.9. Простейшие движения твердого тела
- •Поступательное движение
- •Вращательное движение
- •Частные случаи вращательного движения
- •Скорости и ускорения точек вращающегося тела
- •Тема 1.10. Сложное движение точки. Сложное движение твердого тела
- •Основные определения
- •Плоскопараллельное движение твердого тела
- •Метод разложения сложного движения на поступательное и вращательное
- •Метод определения мгновенного центра скоростей
- •Тема 1.12. Основные понятия и аксиомы динамики. Понятие о трении
- •Содержание и задачи динамики
- •Аксиомы динамики
- •Понятие о трении. Виды трения
- •Трение качения
- •Тема 1.13. Движение материальной точки. Метод кинетостатики
- •Свободная и несвободная точки
- •Сила инерции
- •Принцип кинетостатики (принцип Даламбера)
- •Порядок решения задач с использованием принципа Даламбера
- •Примеры решений задач
- •Тема 1.14. Работа и мощность
- •Работа силы тяжести
- •Тема 1.14. Работа и мощность. Коэффициент полезного действия
- •Мощность
- •Мощность при вращении
- •Коэффициент полезного действия
- •Тема 1.15. Общие теоремы динамики
- •Теорема об изменении количества движения
- •Теорема об изменении кинетической энергии
- •Основы динамики системы материальных точек
- •Основное уравнение динамики при поступательном движении тела
- •Основное уравнение динамики вращающегося тела
- •Тема 2.1. Основные положения.
- •Напряжения
- •Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Примеры построения эпюры продольных сил
- •Геометрические характеристики плоских сечений
- •Центробежный момент инерции
- •Осевые моменты инерции
- •Моменты инерции простейших сечений
- •Полярный момент инерции круга
- •Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Факторов при изгибе методом сечения Полученное выражение можно обобщить
- •Тема 2.6. Понятие о касательных напряжениях
- •Поперечный изгиб. Внутренние силовые факторы. Напряжения
- •Тема 2.7. Сочетание основных деформаций. Гипотезы прочности
- •Понятие о сложном деформированном состоянии
- •Расчет круглого бруса на изгиб с кручением
- •Тема 2.10. Устойчивость сжатых стержней. Основные положения
- •Расчет на устойчивость
- •Способы определения критической силы Расчет по формуле Эйлера
Тема 1.8. Кинематика точки
Иметь представление о скоростях средней и истинной, об ускорении при прямолинейном и криволинейном движениях, о различных видах движения точки.
Знать формулы (без вывода) и графики равномерного и равнопеременного движений точки. Уметь определять параметры движения точки по заданному закону движения, строить и читать кинематические графики.
Анализ видов и кинетических параметров движений
Равномерное движение
Равномерное движение — это движение с постоянной скоростью:
v = const.
Для прямолинейного равномерного движения (рис. 10.1 а)
Полное ускорение движения точ-
ки равно нулю: а = 0.
При криволинейном равномерном движении (рис. 10.16)
Полное ускорение равно нормальному ускорению: а = ап.
Уравнение (закон) движения точки при равномерном движении можно получить, проделав ряд несложных операций.
Так как v = const закон равномерного движения в общем виде является уравнением прямой:
S = S0 + vt ,
где Sо — путь, пройденный до начала отсчета.
Равнопеременное движение
Равнопеременное движение — это движение с постоянным касательным ускорением:
at = const.
Для прямолинейного равнопеременного движения
Полное ускорение равно касательному ускорению. Криволинейное равнопеременное движение (рис. 10.2):
Учитывая, что
и сделав ряд преобразований:
получим значение скорости при равнопеременном движении
После интегрирования будем иметь закон равнопеременного движения в общем виде, представляющий уравнение параболы:
где v0 — начальная скорость движения;
Sо — путь, пройденный до начала отсчета;
at — постоянное касательное ускорение.
Неравномерное движение
При неравномерном движении численные значения скорости и ускорения меняются.
Уравнение неравномерного движения в общем виде представляет собой уравнение третьей S = f(t3) и выше степени.
Кинематические графики
Кинематические графики — это графики изменения пути, скорости и ускорений в зависимости от времени.
Равномерное движение (рис. 10.3)
Равнопеременное движение (рис. 10.4)
Определение скорости и ускорения точки при координатном способе задания ее движения
Если движение точки задано в координатной форме, то каждое параметрическое уравнений , взятое отдельно, описывает движение не самой точки, а ее проекции вдоль соответствующих осей. Пусть движение точки А в плоской системе координат задано уравнениями
х =f1 (t) и у =f2 (t).
Первое из уравнений определяет закон изменения абсциссы х движущейся точки (рис. 1.118), т. е. описывает движение по оси абсцисс точки Ах — проекции точки А на ось х. Второе уравнение определяет закон изменения ординаты у точки А, т. е. описывает движение по оси ординат ее проекции Ау на эту ось. Допустим, что в данный момент времени t точка А имеет скорость v , тогда Ах и А у — проекции точки на оси х и у—движутся по осям со скоростями vх и vу, модули которых равны проекциям скорости v на соответствующие оси (рис. 10.5). Следовательно, дифференцируя каждое из заданных уравнений, найдем модули скоростей vx и vу или, иначе говоря, проекции скорости v на оси координат.
Итак,
vx = dx/dt =f'(t) и vy = dy/dt = f'(t). (1.100)
Рис 10.5
Если из начала и конца вектора v провести прямые, параллельные осям координат, то получим прямоугольный треугольник с гипотенузой v и катетами vх и vy . Отсюда модуль искомой скорости
(1.101)
Направление скорости v, т. е. углы αх или αу , находим по одной из следующих формул:
Аналогично определяется и вектор ускорения а. Сначала находим его проекции на оси х и у:
ах = dvx/dt =f"(t) и ау = dvу /dt =f"(t), (1.105)
а затем модуль
(1.106)
и направление, т. е. углы βх и βy (угол βу на рис. 1.118 не обозначен):
От координатного способа задания движения точки нетрудно перейти к естественному способу. Ранее мы рассмотрели , что, исключив время из уравнений движения х =f1 (t),
у =f2 (t), получаем уравнение траектории Ф (х, у) = 0. Уравнение движения S =f(t) по этой траектории получаем следующим образом. Так как v = dS / dt то dS = v dt; подставив сюда значение полученное из уравнений движения в
осях координат, и проинтегрировав:
(1.108)
получим уравнения движения вида S =f(t).
Например, если движение точки задано уравнениями х = 3t2 и у = 4t2, то точка движется по прямолинейной траектории, уравнение которой 4x – 3y = 0.
Из заданных уравнений движения следует, что проекции скорости на оси координат
VX = 6t Vу = 8t ,
а модуль скорости в любой момент времени
Из уравнения (1.108)
Таким образом, точка движется прямолинейно по траектории 4х— 3y = 0 согласно уравнению S = 5t2.
ЛЕКЦИЯ 11
