
- •Теоретическая механика лекция 1
- •Тема 1.1. Основные понятия и аксиомы статики
- •Введение
- •Аксиомы статики
- •Связи и реакции связей
- •Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей геометрическим способом
- •Решение задач на равновесие геометрическим способом
- •Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей аналитическим способом
- •Проекция силы на ось
- •Определение равнодействующей системы сил аналитическим способом
- •Условия равновесия плоской системы сходящихся сил в аналитической форме
- •Тема 1.3. Пара сил и момент силы относительно точки
- •Пара сил, момент пары сил
- •Момент силы относительно точки.
- •Тема 1.4. Плоская система произвольно расположенных сил
- •Теорема Пуансо о параллельном переносе сил
- •Приведение к точке плоской системы произвольно расположенных сил
- •Влияние точки приведения
- •Частные случаи приведения системы сил к точке
- •Условие равновесия произвольной плоской системы сил
- •Тема 1.4. Балочные системы. Определение реакций опор и моментов Защемления
- •Виды нагрузок и разновидности опор
- •Момент силы относительно оси
- •Пространственная сходящаяся система сил
- •Произвольная пространственная система сил
- •Сила тяжести
- •Точка приложения силы тяжести
- •Центр тяжести однородных плоских тел (плоских фигур)
- •Определение координат центра тяжести плоских фигур
- •Тема 1.7. Основные понятия кинематики. Кинематика точки
- •Основные кинематические параметры
- •Скорость движения
- •Ускорение точки
- •Тема 1.8. Кинематика точки
- •Анализ видов и кинетических параметров движений
- •Равнопеременное движение
- •Неравномерное движение
- •Кинематические графики
- •Определение скорости и ускорения точки при координатном способе задания ее движения
- •Тема 1.9. Простейшие движения твердого тела
- •Поступательное движение
- •Вращательное движение
- •Частные случаи вращательного движения
- •Скорости и ускорения точек вращающегося тела
- •Тема 1.10. Сложное движение точки. Сложное движение твердого тела
- •Основные определения
- •Плоскопараллельное движение твердого тела
- •Метод разложения сложного движения на поступательное и вращательное
- •Метод определения мгновенного центра скоростей
- •Тема 1.12. Основные понятия и аксиомы динамики. Понятие о трении
- •Содержание и задачи динамики
- •Аксиомы динамики
- •Понятие о трении. Виды трения
- •Трение качения
- •Тема 1.13. Движение материальной точки. Метод кинетостатики
- •Свободная и несвободная точки
- •Сила инерции
- •Принцип кинетостатики (принцип Даламбера)
- •Порядок решения задач с использованием принципа Даламбера
- •Примеры решений задач
- •Тема 1.14. Работа и мощность
- •Работа силы тяжести
- •Тема 1.14. Работа и мощность. Коэффициент полезного действия
- •Мощность
- •Мощность при вращении
- •Коэффициент полезного действия
- •Тема 1.15. Общие теоремы динамики
- •Теорема об изменении количества движения
- •Теорема об изменении кинетической энергии
- •Основы динамики системы материальных точек
- •Основное уравнение динамики при поступательном движении тела
- •Основное уравнение динамики вращающегося тела
- •Тема 2.1. Основные положения.
- •Напряжения
- •Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Примеры построения эпюры продольных сил
- •Геометрические характеристики плоских сечений
- •Центробежный момент инерции
- •Осевые моменты инерции
- •Моменты инерции простейших сечений
- •Полярный момент инерции круга
- •Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Факторов при изгибе методом сечения Полученное выражение можно обобщить
- •Тема 2.6. Понятие о касательных напряжениях
- •Поперечный изгиб. Внутренние силовые факторы. Напряжения
- •Тема 2.7. Сочетание основных деформаций. Гипотезы прочности
- •Понятие о сложном деформированном состоянии
- •Расчет круглого бруса на изгиб с кручением
- •Тема 2.10. Устойчивость сжатых стержней. Основные положения
- •Расчет на устойчивость
- •Способы определения критической силы Расчет по формуле Эйлера
Теоретическая механика лекция 1
Тема 1.1. Основные понятия и аксиомы статики
Введение
Техническая механика — комплексная дисциплина. Она включает три раздела: «Теоретическая механика», «Сопротивление материалов», «Детали машин». «Теоретическая механика» — раздел, в котором излагаются основные законы движения твердых тел и их взаимодействия. В разделе «Сопротивление материалов» изучаются основы прочности материалов и методы расчетов элементов конструкций на прочность, жесткость и устойчивость под действием внешних сил. В заключительном разделе «Технической механики» «Детали машин» рассматриваются основы конструирования и расчета деталей и сборочных единиц общего назначения.
Дисциплина «Техническая механика» является общепрофессиональной, обеспечивающей базовые знания при усвоении специальных дисциплин, изучаемых в дальнейшем.
Задачи теоретической механики
Теоретическая механика — наука о механическом движении материальных твердых тел и их взаимодействии. Механическое движение понимается как перемещение тела в пространстве и во времени по отношению к другим телам, в частности к Земле.
Для удобства изучения теоретическую механику подразделяют на статику, кинематику и динамику.
Статика изучает условия равновесия тел под действием сил.
Кинематика рассматривает движение тел как перемещение в пространстве; характеристики тел и причины, вызывающие движение, не рассматриваются.
Динамика изучает движение тел под действием сил.
В отличие от физики теоретическая механика изучает законы движения некоторых абстрактных абсолютно твердых тел: здесь материалы, форма тел существенного значения не имеют. При движении абсолютно твердое тело не деформируется и не разрушается. В случае, когда размерами тела можно пренебречь, тело заменяют материальной точкой. Это упрощение, принятое в теоретической механике, значительно облегчает решение задач о движении.
Понятие о силе и системе сил
Сила — это мера механического взаимодействия материальных тел между собой. Взаимодействие характеризуется величиной и направлением, т.е. сила есть величина векторная1', характеризующаяся точкой приложения (А), направлением (линией действия), величиной (модулем) (рис. 1.1). Силу измеряют в ньютонах,
1Н = 1кг • м/с2.
Силы, действующие на тело (или систему тел), делятся на внешние и внутренние. Внешние силы бывают активные и реактивные. Активные силы вызывают перемещение тела, реактивные стремятся противодействовать перемещению тела под действием внешних сил.
Внутренние силы возникают в теле под действием внешних сил.
Совокупность сил, действующих на какое-либо тело, называют системой сил.
Эквивалентная система сил — система сил, действующая так же, как заданная.
Уравновешенной (эквивалентной нулю) системой сил называется такая система, которая, будучи приложенной к телу, не изменяет его состояния.
Систему сил, действующих на тело, можно заменить одной равнодействующей, действующей так, как система сил.
Аксиомы статики
В результате обобщения человеческого опыта были установлены общие закономерности механического движения, выраженные в виде законов и теорем. Все теоремы и уравнения статики выводятся из нескольких исходных положений. Эти положения называют аксиомами статики.
Первая аксиома
Под действием уравновешенной системы сил абсолютно твердое тело или материальная точка находятся в равновесии или движутся равномерно и прямолинейно (закон инерции).
Вторая аксиома
Две силы, равные по модулю и направленные по одной прямой в разные стороны, уравновешиваются (рис. 1.2).
\Р,\=\Р2\
Третья аксиома
Не нарушая механического состояния тела, можно добавить или убрать уравновешенную систему сил (принцип отбрасывания системы сил, эквивалентной нулю) (рис. 1.3).
\Р,\=\Р2\ \Р,\=\Р.\
Четвертая аксиома (правило параллелограмма сил)
Равнодействующая двух сил, приложенных в одной точке, приложена в той же точке и является диагональю параллелограмма, построенного на этих силах как на сторонах (рис. 1.4).
Вместо параллелограмма можно построить треугольник сил: силы вычерчивают одну за другой в любом порядке; равнодействующая двух сил соединяет начало первой силы с концом второй.
Пятая аксиома
При взаимодействии тел
всякому действию соответствует равное
и противоположно направленное
противодействие (рис. 1.5).
Силы действующие и противодействующие всегда приложены к разным телам, поэтому они не уравновешиваются .
Силы, с которыми два тела действуют друг на друга, всегда равны по модулю и направлены вдоль одной прямой в разные стороны.
Следствие из второй и третьей аксиом
Силу, действующую на твердое тело, можно перемещать вдоль линии ее действия (рис. 1.6).
Сила F приложена в точке А. Требуется перенести ее в точку В. Используя третью аксиому, добавим в точке В уравновешенную систему сил
(F';F"). Образуется уравновешенная по второй аксиоме система сил (F;F"). Убираем ее и получим в точке В силу F", равную заданной F.