- •57. Способы исследования электромагнитных волн различной длины.
- •58. Шкала электромагнитных волн.
- •59. Видимая и невидимая зоны шкалы электромагнитных волн. Свойства электромагнитного излучения в различных областях спектра.
- •60. Ультрафиолетовая, инфракрасная микроскопия и использование ее для исследования объектов судебной экспертизы.
- •61. Дисперсия и цвет тел.
- •62. Понятие спектра. Типы спектров, используемых в судебной экспертизе.
- •63. Дисперсия показателя преломления различных материалов. Коэффициенты поглощения, отражения и пропускания.
- •64. Спектральный состав света различных источников. Спектры и спектральные закономерности.
- •65. Спектральные аппараты.
- •66. Действия света на вещество. Фотоэлектрический эффект.
- •67. Понятие биологических методов.
- •68. Поиск и изъятие следов биологического происхождения на месте происшествия.
- •69. Основы и возможности днк-анализа тканей и выделений человека.
- •70. Молекулярно-генетический идентификационный анализ
- •71. Понятие запаха, пахучих (запаховых) следов. Изъятие запаховых следов, правила упаковки запахоносителей.
- •72. Методы исследования биологических объектов.
- •73. Метод ольфакторного анализа пахучих следов человека с применением собак-детекторов.
- •74. Понятия субъект и объект в исследовании запаховых следов человека с применением собак-детекторов.
- •75. Периодический закон д.И. Менделеева.
58. Шкала электромагнитных волн.
Исследования, проводившиеся в самых разнообразных областях физики, позволили установить, что диапазон частот (или длин волн) электромагнитных волн чрезвычайно широк. Из теории Максвелла следует, что различные электромагнитные волны, в том числе и световые, имеют общую природу. Поэтому их удобно представить в виде единой шкалы, имеющей диапазон частот от нескольких герц до 1022 Гц, что соответствует длинам волн от тысяч километров до 10-14 м.
Исключительным успехом электромагнитной теории Максвелла явилось создание шкалы электромагнитных волн. Вдоль шкалы слева направо не-прерывно возрастает одна величина — частота (уменьшается длина волны), а ее увеличение приводит к появлению качественно различных излучений.
В виду огромного различия длин волн эта шкала построена в логарифмическом масштабе: метки на шкале соответствуют длинам, каждая из которых отличается в 10 раз от соседней. На шкале указаны участки длин волн (или ), занимаемые различными типами электромагнитных волн. Распределение электромагнитных волн по типам сделано в соответствии со способами их генерации. С изменением длины электромагнитных волн изменяется и их взаимодействие с веществом, поэтому методы их регистрации и изучения различны. Различают следующие участки на шкале:
1) электромагнитные колебания низкой частоты (3*104 <<)
2) радиоволны (1*10-4м<≤3*104м)
3) инфракрасное излучение (7,6*10-7м<≤1*10-4м)
4) видимый свет (4*10-7м<≤7,6*10-7м)
5) ультрафиолетовое излучение (6*10-9м<≤4*10-7м)
6) рентгеновское излучение (10-12м<≤10-8м)
7) -излучение (<10-11 м)
Первый участок шкалы содержит волны, возбуждаемые низкочастотными электромагнитными колебаниями, происходящими в устройствах, обладающих большой индуктивностью и емкостью (в генераторах переменного тока). Такие волны практически не излучаются в окружающее пространство и быстро затухают.
Второй участок шкалы — радиоволны. Он, в свою очередь, делится на две части. К первой из них относятся: длинные (3•103 м < < 3•104 м), средние (2•102 м < < 3•103 м) и короткие волны (10 м < < 2•102 м). Эти волны излучаются открытыми колебательными контурами и распространяются в пространстве. Длинные волны способны огибать земную поверхность, а короткие волны распространяются, поочередно отражаясь от ионосферы и поверхности Земли.
Ко второй части данного участка шкалы относятся ультракороткие (метровые) радиоволны, сантиметровые и миллиметровые волны. Эти волны излучаются специальными электромагнитными вибраторами и регистрируются радиотехническими устройствами. Такие волны распространяются прямолинейно, через ионосферу они способны уходить в космос. Их используют для космической связи, передачи телеметрической информации, а на Земле (в условиях прямой видимости) — в телевидении и радиолокации. (Следует отметить, что волны, относящиеся к первому и второму участкам шкалы электромагнитных волн, излучаются свободными зарядами, движущимися ускоренно, и представляют собой электромагнитное излучение, получаемое с помощью колебательных контуров и макроскопических вибраторов.)
С третьего участка шкалы электромагнитных волн начинаются волны, которые излучаются атомами и молекулами вещества. Участки третий, четвертый и пятый данной шкалы (т.е. инфракрасное, видимое и ультрафиолетовое излучения) относятся к оптическому излучению. Эти волны излучаются внутриатомными электронами. Они распространяются прямолинейно (при отсутствии дифракции).
Видимый свет воспринимается глазом. Инфракрасное излучение является преимущественно тепловым излучением. Его регистрируют тепловыми методами, а также частично фотоэлектрическими и фотографическими методами. Ультрафиолетовое излучение химически и биологически активно. Оно вызывает явление фотоэффекта, флуоресценцию и фосфоресценцию (свечение) ряда веществ. Его регистрируют фотографическими и фотоэлектрическими методами. Для получения спектра ультрафиолетового излучения используют призмы и дифракционные решетки из кварцевого стекла. Для изучения ультрафиолетового излучения, длина волны которого короче 2•10-7 м, используют вакуумные спектрографы, потому что это излучение сильно поглощается воздухом.
Шестой участок шкалы электромагнитных волн образует рентгеновское излучение. Рентгеновское излучение возникает при взаимодействии быстрых электронов с атомами твердых тел и обусловлено переходами электронов на внутренних оболочках атомов. Его получают с помощью специальных рентгеновских трубок. Рентгеновское излучение обладает большой проникающей способностью. Его регистрируют фотографическими, флюорографическими и ионизационными методами.
Седьмой участок шкалы электромагнитных волн — гамма-излучение. Оно возникает в результате процессов, происходящих в атомных ядрах, и сопровождает ядерные реакции. Гамма-излучение обладает громадной проникающей способностью. Его регистрируют ионизационными методами. Гамма-излучение используют в дефектоскопии.
С уменьшением длины электромагнитных волн все сильнее проявляются квантовые свойства излучения и все с большим основанием вместо слова "волны" можно использовать выражение "поток фотонов".
