
- •1. История развития анатомии и физиологии человека
- •Методы исследований
- •3.Скелет - структурная основа тела человека
- •4.Скелет головы. Возможные нарушения в его развитии
- •Аномалии развития лицевого отдела черепа
- •Аномалии развития мозгового черепа
- •5.Возрастные особенности строения скелета и возможные нарушения
- •6.Суставы и связки
- •[Править]Строение
- •[Править]Суставные поверхности
- •[Править]Суставная капсула
- •[Править]Суставная полость
- •[Править]Околосуставные ткани
- •[Править]Связки суставов
- •[Править]Классификация суставов
- •7.Мышечная система. Развитие мышечной системы в онтогенезе, отклонения в ее развитии.
- •8.Анатомия и физиология мышечной системы человека. Мышцы головы и их значение
- •[Править]Мимические мышцы
- •9.Внешние признаки работы сердечно-сосудистой системы и методы их обнаружения
- •Учащенное сердцебиение
- •Внезапное головокружение или потеря равновесия
- •Обморок
- •Боль или дискомфорт в груди
- •Сердечный приступ – тихий убийца
- •10.Система кровообращения, ее строение и функции
- •Строение и функции органов кровообращения
- •12.Электрокардиография, способы ее регистрации, возможные отклонения в работе сердца.
- •13 Строение сердца и его возрастные особенности. Возможные изменения в работе сердечно-сосудистой системы, их причины
- •[Править]Ишемические поражения
- •14 Кровь – жидкая среда организма. Состав и функции крови
- •Форменные элементы крови
- •15 Переливание крови
- •16 Резус-фактор и его значение в жизни человека
- •17 Внешние признаки работы сердечно-сосудистой системы и способы их измерения
- •18.Кровь и кровообращение – важнейшие системы для жизнедеятельности организма
- •19.Гуморальная регуляция жизнедеятельности организма
- •20.Пищеварительная система. Ее строение и функции
- •21. Пищеварение в тонком и толстом кишечнике.
- •22. Пищеварение как физиологическая функция. Гигиена пищеварения
- •2. Типы пищеварения
- •3. Секреторная функция системы пищеварения
- •4. Моторная деятельность желудочно-кишечного тракта
- •5. Регуляция моторной деятельности желудочно-кишечного тракта
- •6. Механизм работы сфинктеров
- •7. Физиология всасывания
- •8. Механизм всасывания воды и минеральных веществ
- •Важность гигиены пищеварения
- •23. Обмен веществ и энергии. Пищевой рацион Обмен веществ и энергии
- •Обмен белков
- •Обмен углеводов
- •Обмен жиров
- •Водный и солевой обмен
- •Витамины
- •Витамин а
- •Витамин с
- •Витамин d
- •Витамины группы в
- •Витамин рр
- •Понятие гомеостаза. Гомеостаз организма и системы. Механизмы гомеостаза.
- •Гомеостаз системы и организма
- •Функции гомеостаза
- •Механизмы гомеостаза
- •Гомеостаз человека
- •26. Процесс дыхания и его регуляция.
- •28. Эндокринная система, ее строение и функции.
- •30. Щитовидная железа, ее значение в жизнедеятельности организма
- •31. Гормоны и их значение в жизнедеятельности организма Гормоны. Роль гормонов для организма
- •32. Половые железы и половое созревание
- •33. Взаимосвязь организма с окружающей средой (метаболизм). Обмен веществ (метаболизм)
- •1. Ассимиляция
- •Биосинтез углеводов
- •Биосинтез липидов
- •Биосинтез белков
- •2. Диссимиляция
- •Диссимиляция углеводов
- •Диссимиляция жиров
- •Диссимиляция белков
- •3. Связь обмена углеводов, липидов, белков и других соединений
- •4. Роль витаминов и минеральных веществ в обмене веществ
- •5. Регуляция обмена веществ
- •34. Основные физиологические функции организма
- •35. Основные изменения строения и функций организма человека в онтогенезе
- •36. Основные гигиенические навыки, гигиена дыхания и питания.
2. Диссимиляция
Яндекс.ДиректВсе объявленияБиохимический экспресс анализатор Abaxis. 100 мкл крови. Одноразовый реагентный диск. 14 панелей тестов.petrolab.ru Есть противопоказания. Посоветуйтесь с врачом.
Источником энергии, необходимой для поддержания жизни, роста, размножения, подвижности, возбудимости и других проявлений жизнедеятельности, являются процессы окисления части тех продуктов расщепления, которые используются клетками для синтеза структурных компонентов.
Наиболее древним и поэтому наиболее общим для всех организмов является процесс анаэробного расщепления органических веществ, осуществляющийся без участия кислорода. Позднее этот первоначальный механизм получения энергии живыми клетками дополнился окислением образующихся промежуточных продуктов кислородом воздуха, который появился в атмосфере Земли в результате фотосинтеза. Так возникло внутриклеточное, или тканевое дыхание.
Диссимиляция углеводов
Основным источником запасённой в химических связях энергии у большинства организмов являются углеводы. Расщепление полисахаридов в организме начинается с их ферментативного гидролиза. Например, у растений при прорастании семян запасённый в них крахмал гидролизуется амилазами, у животных поглощённый с пищей крахмал гидролизуется под действием амилаз слюны и поджелудочной железы, образуя мальтозу. Мальтоза далее гидролизуется с образованием глюкозы. В животном организме глюкоза образуется также в результате расщепления гликогена. Глюкоза подвергается дальнейшим превращениям в процессах брожения или гликолиза, в результате которых образуется пировиноградная кислота. Последняя, в зависимости от типа обмена веществ данного организма, сложившегося в процессе исторического развития, может далее подвергаться разнообразным превращениям. При различных видах брожений и при гликолизе в мышцах пировиноградная кислота подвергается анаэробным превращениям. В аэробных условиях — в процессе дыхания — она может подвергаться окислительному декарбоксилированию с образованием уксусной кислоты, а также служить источником образования других органических кислот: щавелево-уксусной, лимонной, цис-аконитовой, изолимонной, щавелево-янтарной, кетоглутаровой, янтарной, фумаровой и яблочной. Их взаимные ферментативные превращения, приводящие к полному окислению пировиноградной кислоты до CO2 и H2O, называются трикарбоновых кислот циклом, или циклом Кребса.
Диссимиляция жиров
Диссимиляция жиров также начинается с их гидролитического расщепления липазами с образованием свободных жирных кислот и глицерина; эти вещества могут далее легко окисляться, давая, в конечном счёте, CO2 и H2O. Окисление жирных кислот идёт главным образом путём b-окисления, то есть таким образом, что от молекулы жирной кислоты отщепляются два углеродных атома, дающих остаток уксусной кислоты, и образуется новая жирная кислота, которая может подвергнуться дальнейшему b-окислению. Получающиеся остатки уксусной кислоты либо используются для синтеза различных соединений (например, ароматических соединений, изопреноидов и другие), либо окисляются до CO2 и H2O.