Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВИЭ.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
153.6 Кб
Скачать

5.2 Основные компоненты ветроэлектроустановок

Современные ветрогенератор обычно состоят из следующих основных компонентов:

Лопастей

Ротора

Трансмиссии

Генератора

Система контроля

Лопасти.

Солнечная энергетика — направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии[1] и является экологически чистой, то есть не производящей вредных отходов[2]. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.

Земные условия

Карта солнечного излучения — Европа

Поток солнечного излучения, проходящий через площадку в 1 м², расположенную перпендикулярно потоку излучения на расстоянии одной астрономической единицы от центра Солнца (на входе в атмосферу Земли), равен 1367 Вт/м² (солнечная постоянная). Из-за поглощения, при прохождении атмосферной массы Земли, максимальный поток солнечного излучения на уровне моря (на Экваторе) — 1020 Вт/м². Однако следует учесть, что среднесуточное значение потока солнечного излучения через единичную горизонтальную площадку как минимум в три раза меньше (из-за смены дня и ночи и изменения угла солнца над горизонтом). Зимой в умеренных широтах это значение в два раза меньше.

Возможная выработка энергии уменьшается из-за глобального затемнения — уменьшения потока солнечного излучения, доходящего до поверхности Земли.

Способы получения электричества и тепла из солнечного излучения:

фотовольтаика — получение электроэнергии с помощью фотоэлементов;

гелиотермальная энергетика — нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах). В качестве особого вида станций гелиотермальной энергетики принято выделять солнечные системы концентрирующего типа (CSP - Concentrated solar power). В этих установках энергия солнечных лучей с помощью системы линз и зеркал фокусируется в концентрированный луч солнца. Этот луч солнца используется как источник тепловой энергии для нагрева рабочей жидкости, которая расходуется для электрогенерации по аналогии с обычными ТЭЦ или накапливается для сохранения энергии[3]. Преобразование солнечной энергии в электричество осуществляется с помощью тепловых машин:

паровые машины (поршневые или турбинные), использующие водяной пар, углекислый газ, пропан-бутан, фреоны;

двигатель Стирлинга;

термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор).

солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием). Преимущество — запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.

Достоинства и недостатки

Достоинства

Общедоступность и неисчерпаемость источника.

Теоретически, полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (характеристику отражательной (рассеивающей) способности) земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Недостатки

Зависимость от погоды и времени суток.

Как следствие необходимость аккумуляции энергии.

При промышленном производстве -- необходимость дублирования солнечных ЭС маневренными ЭС сопоставимой мощности. Высокая стоимость конструкции, связанная с применением редких элементов (к примеру, индий и теллур).

Необходимость периодической очистки отражающей поверхности от пыли.

Нагрев атмосферы над электростанцией.

Типы фотоэлектрических элементов

В настоящее время принято различать три поколения ФЭП[5]:

Кристаллические (первое поколение):

монокристаллические кремниевые;

поликристаллические (мультикристаллические) кремниевые;

технологии выращивания тонкостенных заготовок: EFG (Edge defined film-fed crystal growth technique), S-web (Siemens), тонкослойный поликремний (Apex).

Тонкоплёночные (второе поколение):

кремниевые: аморфные, микрокристаллические, нанокристаллические, CSG (crystalline silicon on glass);

на основе теллурида кадмия (CdTe);

на основе селенида меди-индия-(галлия) (CI(G)S);

ФЭП третьего поколения:

фотосенсибилизованные краситилем (dye-sensitized solar cell, DSC);

органические (полимерные) ФЭП (OPV);

неорганические ФЭП (CTZSS);

ФЭП на основе каскадных структур.

В 2005 году на тонкоплёночные фотоэлементы приходилось 6 % рынка. В 2006 году тонкоплёночные фотоэлементы занимали 7 % долю рынка. В 2007 году доля тонкоплёночных технологий увеличилась до 8 %. В 2009 году доля тонкоплёночных фотоэлементов выросла до 16,8 %[6].

За период с 1999 года по 2006 год поставки тонкоплёночных фотоэлементов росли ежегодно в среднем на 80 %. Итоги развития фотоэлементной отрасли

В 1985 году все установленные мощности мира составляли 21 МВт.№ Страна Суммарные мощности фотоэлектрических

станций, МВт. 2010 год

1 Германия 17320

2 Испания 3892

3 Япония 3617

4 Италия 3502

5 США 2519

6 Чехия 1953

7 Франция 1025

8 Китай 893

9 Бельгия 803

10 Ю. Корея 573

11 Австралия 504

Весь мир - 39778 Распространение солнечной энергетики

В 2010 году 2,7 % электроэнергии Испании было получено из солнечной энергии[9].

В 2010 году 2 % электроэнергии Германии было получено из фотоэлектрических установок[10].

В 2011 году около 3 % электроэнергии Италии было получено из фотоэлектрических установок[11].

Геотермальная энергетика

Материал из Википедии — свободной энциклопедии

Перейти к: навигация, поиск

Несьявеллир ГеоТЭС, Исландия

Геотермальная энергетика — направление энергетики, основанное на производстве электрической энергии за счёт энергии, содержащейся в недрах земли, на геотермальных станциях. Обычно относится к альтернативным источникам энергии, использующим возобновляемые энергетические ресурсы.

В вулканических районах циркулирующая вода перегревается выше температуры кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем такие паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла.

Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении.

Геотермальная энергетика подразделяется на два направления: петротермальная энергетика и гидротермальная энергетика. Ниже описана гидротермальная энергетика.[1]

Ресурсы

Перспективными источниками перегретых вод обладают множественные вулканические зоны планеты в том числе Камчатка, Курильские, Японские и Филиппинские острова, обширные территории Кордильер и Анд.

Россия

На 2006 г. в России разведано 56 месторождений термальных вод с дебитом, превышающим 300 тыс. м³/сутки. На 20 месторождениях ведется промышленная эксплуатация, среди них: Паратунское (Камчатка), Казьминское и Черкесское (Карачаево-Черкесия и Ставропольский край), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край).

[править]

Достоинства и недостатки

Главным достоинством геотермальной энергии является её практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года.

Существуют следующие принципиальные возможности использования тепла земных глубин. Воду или смесь воды и пара в зависимости от их температуры можно направлять для горячего водоснабжения и теплоснабжения, для выработки электроэнергии либо одновременно для всех этих целей. Высокотемпературное тепло околовулканического района и сухих горных пород предпочтительно использовать для выработки электроэнергии и теплоснабжения. От того, какой источник геотермальной энергии используется, зависит устройство станции.

Если в данном регионе имеются источники подземных термальных вод, то целесообразно их использовать для теплоснабжения и горячего водоснабжения. Например, по имеющимся данным[источник не указан 614 дней], в Западной Сибири имеется подземное море площадью 3 млн м2 с температурой воды 70—90 °С. Большие запасы подземных термальных вод находятся в Дагестане, Северной Осетии, Чечне, Ингушетии, Кабардино-Балкарии, Закавказье, Ставропольском и Краснодарском краях, на Камчатке и в ряде других районов России, также в Казахстане.

Главная из проблем, которые возникают при использовании подземных термальных вод, заключается в необходимости возобновляемого цикла поступления (закачки) воды (обычно отработанной) в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (например, бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности.

Наибольший интерес представляют высокотемпературные термальные воды или выходы пара, которые можно использовать для производства электроэнергии и теплоснабжения.

Геотермальная электроэнергетика в мире

Потенциальная суммарная рабочая мощность геотермальных электростанций в мире уступает большинству станций на иных возобновимых источниках энергии. Однако направление получило развитие в силу высокой энергетической плотности в отдельных заселённых географических районах, в которых отсутствуют или относительно дороги горючие полезные ископаемые, а также благодаря правительственным программам.

Установленная мощность геотермальных электростанций в мире на начало 1990-х составляла около 5 тысяч МВт, на начало 2000-х — около 6 тысяч МВт. В конце 2008 года суммарная мощность геотермальных электростанций во всём мире выросла до 10,5 тысяч МВт Классификация геотермальных вод[12]

По температуреСлаботермальные до 40°C

Термальные 40-60°C

Высокотермальные 60-100°C

Перегретые более 100°C

По минерализации (сухой остаток)ультрапресные до 0,1 г/л

пресные 0,1-1,0 г/л

слабосолоноватые 1,0-3,0 г/л

сильносолоноватые 3,0-10,0 г/л

соленые 10,0-35,0 г/л

рассольные более 35,0 г/л

По общей жесткостиочень мягкие до 1,2 мг-экв/л

мягкие 1,2-2,8 мг-экв/л

средние 2,8-5,7 мг-экв/л

жесткие 5,7-11,7 мг-экв/л

очень жесткие более 11,7 мг-экв/л

По кислотности, рНсильнокислые до 3,5

кислые 3,5-5,5

слабокислые 5,5-6,8

нейтральные 6,8-7,2

слабощелочные 7,2-8,5

щелочные более 8,5

По газовому составусероводородные

сероводородно-углекислые

углекислые

азотно-углекислые

метановые

азотно-метановые

азотные

По газонасыщенностислабая до 100 мг/л

средняя 100-1000 мг/л

высокая более 1000 мг/л

Петротермальная энергетика

Данный тип энергетики связан с глубинными температурами Земли, которые с определённого уровня начинают подниматься. Средняя скорость её повышения с глубиной — около 2,5°С на каждые 100 м. На глубине 5 км температура составляет примерно 125°С, а на 10 км около 250°С. Добыча тепла производится посредством бурения двух скважин, в одну из которых закачивается вода, которая, нагреваясь, попадает в смежную скважину и выходит в виде пара. Проблема данной энергетики на сегодня — её рентабельность