
- •Содержание
- •4.1 Построение эмпирической функции распределения, гистограммы и полигона частот 19
- •5.1 Смещенные и несмещенные оценки числовых характеристик 24
- •I. Эмпирические распределения случайной величины
- •1.1 Построение эмпирической функции распределения, гистограммы и полигона частот
- •1.2 Предположение о виде закона распределения, о рвз
- •II. Оценки числовых Характеристик случайной величины
- •2.1 Смещенные и несмещенные оценки числовых характеристик
- •III. Проверка выборки на резко выделяющиеся значения
- •3.1 Проверка выборки на рвз по классическому правилу
- •3.2 Проверка выборки на рвз по робастному правилу
- •3.3 Выводы по проверке выборки на резко выделяющиеся значения
- •IV. Эмпирические распределения случайной величины для выборки без рвз
- •4.1 Построение эмпирической функции распределения, гистограммы и полигона частот
- •4.2 Предположение о виде закона распределения, о рвз
- •V. Оценки числовых характеристик случайной величины для выборки без рвз
- •5.1 Смещенные и несмещенные оценки числовых характеристик
- •5.2 Относительные ошибки между смещенными и несмещенными оценками
- •VI. Проверка гипотезы о законе распределения случайной величины
- •6.1 Подходящий закон распределения
- •6.2 Критерий Пирсона
- •6.3 Критерий Колмогорова
- •6.4 Критерий
- •6.5 Выражения для функции нормального распределения и плотности нормального распределения
- •VII. Доверительные интервалы
- •7.1 Доверительные интервалы для математического ожидания и дисперсии
- •7.1.1 По исходным данным
- •7.1.2 По второй строке исходных данных
- •7.2 Сравнение доверительных интервалов
- •7.3 Доверительные интервалы для функции распределения
- •VIII. Теоретические числовые характеристики распределения
- •8.1 Числовые характеристики случайной величины
- •8.2 Сравнение теоретических числовых характеристик с их оценками
- •IX. Однофакторный дисперсионный анализ
- •9.1 Проверка выхода на нормальный закон распределения
- •9.2 Средние и дисперсии по уровням
- •9.3 Проверка однородности дисперсий по партиям
- •9.4 Общая дисперсия, дисперсия фактора, дисперсия помехи
- •9.5 Проверка значимости входного фактора
- •X. Гипотезы о числовых характеристиках
- •Проверка гипотезы
- •Проверка гипотезы
- •Проверка гипотезы
- •Проверка гипотезы
- •Список использованной литературы
9.1 Проверка выхода на нормальный закон распределения
Необходимо проверить, имеет ли выход нормальный закон распределения. В силу малости дублирования будем делать проверку по критерию .
Выдвинем следующие гипотезы:
: случайная величина подчиняется нормальному закону распределения
: случайная величина подчиняется другому закону распределения
Критерий применяет статистику, представляющую собой взвешенную сумму квадратов разности эмпирической функции распределения и теоретической функции распределения:
Конкретный вид статистики будет определяться функцией :
, тогда выборочное значение критериальной статистики будет вычисляться по следующей формуле:
Критерий применяется для упорядоченной по возрастанию выборки, поэтому необходимо упорядочить по возрастанию каждую выборку.
Результаты расчетов для упорядоченных выборок приведены в приложении 5.
По таблице функции распределения [1] находим критические значения для уровней значимости =0,01; 0,05; 0,1:
Найденные выборочные значения приведены в таблице 15.
Таблица 15
Выборочные значения
-
№
1
0,684283
2
0,211766
3
0,457277
4
0,260556
5
0,255805
6
0,466371
7
0,216096
8
0,174369
9
0,277375
10
0,236153
11
0,372841
12
0,200476
Так как все выборочные значения (см. таблицу 15) меньше критических значений для всех уровней значимости, то нет оснований отвергать гипотезу о нормальном распределении случайной величины, т.е. выход имеет нормальный закон распределения.