Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kurs_lektsy_2_sem.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
4.95 Mб
Скачать

http://vk.com/id92359006МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ВОСТОЧНОУКРАИНСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ

имени ВЛАДИМИРА ДАЛЯ

Барабаш В. В.

Чалая Е. Ю.

КУРС ЛЕКЦИЙ

ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ

(2 семестр)

(для студентов специальности «Прикладная математика», «Компьютерные системы и сети»)

У Т В Е Р Ж Д Е Н О

на заседании кафедры

прикладной математики.

Протокол № 2 от 27. 09. 07.

Луганск 2008

УДК 62-501. 7

Курс лекций по дискретной математике (для студентов направления «Прикладная математика», а также «Компьютерные системы и сети») / Сост.: В. В. Барабаш, Е. Ю. Чалая, Луганск: изд. ВНУ им. В. Даля, 2008 - 88 с.

Приведены теоретические материалы, необходимые для изучения дисциплины «Дискретная математика». Рассмотрены основные разделы 2 семестра: комбинаторика, теория графов, теория конечных автоматов, элементы теории алгоритмов. В разделе «Комбинаторика» указаны основные комбинаторные правила и формулы, связь между числовой последовательностью, производящей функцией и рекуррентным соотношением, их использование в решении задач. В разделе «Теория графов» рассмотрены основные алгоритмические задачи теории графов, вопросы, связанные с различными видами циклов на графах. В разделе «Теория конечных автоматов» приведен алгоритм минимизации автомата, рассмотрены алгоритмические задачи, решаемые с применением машины Тьюринга. Приведены задачи для самостоятельной работы студентов.

Составители: Барабаш В. В., доцент.

Чалая Е. Ю., ассистент.

Отв. за выпуск Грибанов В. М., профессор.

Рецензент Ермаков А. И., доцент.

Комбинаторика.

Комбинаторика – это раздел математики, в котором рассматриваются вопросы о том, сколько различных комбинаций можно составить из заданных объектов, подчиненных некоторым условиям.

Комбинаторика возникла в XVI веке. Первые задачи комбинаторики касались азартных игр – сколькими способами можно получить данное число очков, бросая две или три кости, или сколькими способами можно вытянуть двух королей из карточной колоды и т.д. Подобные вопросы и явились движущей силой развития комбинаторики и теории вероятностей. Яркий свет в комбинаторике оставили Паскаль, Я. Бернулли, Лейбниц, Эйлер и другие математики. В ХХ веке, в связи с созданием ЭВМ и повышением интереса к дискретной математике комбинаторика переживает бурный рост. Комбинаторные задачи возникают в анализе и алгебре, геометрии и топологии, в различных разделах математики и в приложениях.

§1. Правила комбинаторики. Основные комбинаторные формулы.

Существует два общих правила комбинаторики: правило сложения и правило умножения.

Правило умножения:

Пусть составляются всевозможные строки длины . Пусть первая компонента строки может быть выбрана числом способов, равным . После того, как первая компонента выбрана и независимо от того, как она выбрана, вторая компонента выбирается числом способов, равным . Далее аналогично. Последняя компонента выбирается числом способов, равным . Тогда количество всех построенных строк равно произведению: .

Правило сложения:

Если некоторый элемент можно выбрать различными способами, а другой элемент выбирается способами, то объект « » можно выбрать способами.

Замечание: Правило сложения, как и правило умножения, можно обобщить на случай слагаемых.

Можно также отметить, что знак умножения в соответствующем правиле соответствует союзу «и» русского языка. А знак сложения – союзу «или». Причём, союз «или» применяется во взаимоисключающем смысле.

Для дальнейшего изложения необходимо ввести следующее вспомогательное понятие.

Определение 1: Пусть дано конечное множество из элементов. Всякий набор из элементов данного множества (при этом элементы в наборе могут и повторяться) будем называть - расстановками.

Через понятие расстановки вводятся основные определения комбинаторики: сочетания, размещения и перестановки. При этом каждое из этих понятий может быть с повторениями и без повторений.

Размещения.

1) Размещения без повторений.

Определение 2: Пусть имеется различных предметов. Расстановки из элементов по элементов ( ) называются размещениями без повторений. Обозначают: . Здесь имеется в виду, что элементы в расстановках не повторяются.

В данном определении существенной является следующая позиция: две расстановки различны, если они отличаются хотя бы одним элементом или порядком элементов.

Теорема 1: Число всех размещений без повторений вычисляется по формуле:

.

Пример: Собрание из 25 человек выбирает президиум из 3 человек. Сколько возможно вариантов выбора?

.

Замечание: Число размещений без повторений можно также находить по формуле:

.

Если в знаменателе дроби , то принято считать .

2) Размещения с повторениями.

Определение размещений с повторениями аналогично предыдущему, но отличается существенно тем, что элементы в подмножествах могут повторяться. Обозначают: .

Теорема 2: Число всех размещений из элементов по элементов с повторениями находится по формуле:

.

Доказать теорему можно индукцией по числу .

Примеры: количество телефонных номеров, автомобильных номеров, комбинаций в секретном замке, генетический код. Во всех этих ситуациях в расстановках элементы могут повторяться.

Количество комбинаций в секретном замке, число телефонных номеров, число автомобильных номеров, код Морзе, генетический код.

Разгадка генетического кода – крупнейшее достижение биологии ХХ века. Информация записана в гигантских молекулах ДНК (дезоксирибонуклеиновой кислоты). Различные молекулы ДНК отличаются порядком 4-х азотистых оснований. Эти основания определяют порядок построения белков организма из двух десятков аминокислот, причём каждая аминокислота зафиксирована кодом из 3-х азотистых оснований.

В одной хромосоме содержится несколько десятков миллионов азотистых оснований. Число различных комбинаций, в которых они могут идти друг за другом столь велико, что ничтожной доли этих комбинаций хватит для зашифровки всего многообразия живых организмов за время существования жизни на земле, оно равно , где – число оснований в хромосоме.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]