
- •Елабужский государственный педагогический университет Сахабиев и.А.
- •Тема: методы астрофизики
- •§ 1 Задачи и основные разделы астрофизики
- •§ 2 Принципы астрофотометрии.
- •§3 Оптические телескопы
- •1)Собрать как можно больше света, приходящего от небесных светил, создать их изображение.
- •2)Создать по возможности наиболее резкое изображение объекта, чтобы можно было выделять излучение от отдельных его деталей, а также измерять угловые расстояния между ними.
- •§4 Радиотелескопы
- •§4 Исследования с космических аппаратов
- •§5 Определение физических свойств небесных тел по их спектрам
- •1. Линейчатый спектр испускания. Он состоит из отдельных спектральных линий, т. Е. Длины волн излучений имеют ряд строго определенных значений. Такой спектр дает любой разреженный газ.
- •§ 6. Эффект Доплера, Зеемана и Штарка.
- •Тема: солнце
- •§ 1. Общие сведения о Солнце
- •§ 2. Солнечная постоянная и ее измерение
- •§ 3. Внутренне строение и атмосфера Солнца
- •§ 4. Внешние слои солнечной атмосферы
- •§ 4. Активные образования в солнечной атмосфере
- •§ 5. Цикл солнечной активности
- •Тема: звезды
- •§1. Нормальные звезды
- •§2. Спектры нормальных звезд и спектральная классификация
- •§3. Диаграмма спектр - светимость
- •§4. Размеры звезд.
- •§5. Массы и плотность звезд.
- •§6. Физические условия в недрах и строение звезд
- •§ 7. Модели звезд
- •§8. Двойные звезды
- •§9. Физически переменные звезды
- •Тема: наша галактика
- •§ 1 Объекты нашей Галактики.
- •§ 2 Распределение звезд в Галактике
- •§ 3 Звездные скопления
- •§ 4 Пространственные скорости звезд и движение Солнечной системы
- •§ 5 Вращение Галактики
- •§ 6 Межзвездная пыль
- •§ 7 Межзвездный газ
- •§ 8 Космические лучи
- •§ 9 Общая структура Галактики
- •§ 1 Классификация галактик и их спектры
- •§ 2 Определение размеров, расстояний и масс галактик.
- •§ 3 Радиогалактики и квазары.
- •§1 Вопросы происхождения и эволюции небесных тел
- •§2 Происхождение и эволюция звезд.
- •§3 Происхождение плане. Гипотезы Канта Лапласа и Джинса, Шмидта.
- •§4 Понятие о космологии
- •§ 1. Задачи и основные разделы астрофизики..................2
- •§ 2. Принципы астрофотометрии...............................2
- •§ 7. Модели звезд..........................................29
§ 7 Межзвездный газ
Газовые туманности. Самая известная газовая туманность - в созвездии Ориона, протяженностью свыше 6 пс, заметная в безлунную ночь даже невооруженным глазом.
Всего насчитывают около 400 таких объектов. Естественно, что полное их число в Галактике значительно больше, но мы их не видим из-за сильного межзвездного поглощения света.
В спектрах газовых туманностей имеются яркие эмиссионные линии, что доказывает газовую природу их свечения. У наиболее ярких туманностей прослеживается и слабый непрерывный спектр.
Как правило, сильнее всех выделяются водородные линии.
Внутри газовой туманности или непосредственно вблизи от нее почти всегда можно найти горячую звезду спектрального класса О или ВО, являющуюся причиной свечения всей туманности. Эти горячие звезды обладают очень мощным ультрафиолетовым излучением, ионизующим и заставляющим светиться окружающий газ точно так же, как это имеет место в планетарных туманностях (этот процесс называется флуоресценцией). Таким образом, в туманности происходит как бы «дробление» ультрафиолетовых квантов звезды и переработка их в излучение, соответствующее спектральным линиям видимого спектра.
Излучение в линиях водорода, ионизованного кислорода и азота, приводящее к охлаждению газа, уравновешивает поступление тепла через ионизацию. В итоге температура туманности устанавливается на некотором определенном уровне порядка 104 К, что можно проверить по тепловому радиоизлучению газа.
Концентрацию частиц туманностей порядка 102 – 103 см 3. Как видно, концентрация частиц в газовых туманностях в миллионы раз меньше, чем в солнечной короне, и в миллиарды раз меньше, чем могут обеспечить лучшие современные вакуумные насосы.
§ 8 Космические лучи
Диффузная, среда которую мы рассмотрели, состоит главным образом из газа, образующего плоскую подсистему в Галактике. Возникает вопрос, какова природа межзвездной среды на больших расстояниях от плоскости Галактики? О том, что там может иметься газ, пусть даже очень разреженный, можно судить хотя бы на том основании, что сбрасывающие с себя газовые оболочки планетарные туманности встречаются на значительных расстояниях от галактической плоскости.
Наиболее важные результаты о природе межзвездной среды в этой области Галактики получаются на основании изучения космических лучей, представляющих собой весьма энергичные элементарные частицы и атомные ядра, движущиеся с огромными скоростями, близкими к скорости света. Энергии этих частиц колоссальны (сотни миллиардов электрон-вольт!). Проходя через земную атмосферу, космические лучи сталкиваются с молекулами воздуха и порождают много новых энергичных частиц (вторичные космические лучи).
По химическому составу первичные космические лучи отличаются от вещества большинства звезд относительно большим содержанием некоторых элементов, особенно лития, бериллия и бора, которые практически отсутствуют в космосе, так как легко «выгорают» в звездах из-за ядерных реакций. Содержание в космических лучах наиболее тяжелых элементов, таких как Са, Fe, Ni, превышает среднее содержание их в космосе в несколько десятков раз.
Аномально высокое содержание лития, бериллия и бора в космических лучах объясняется расщеплением более тяжелых ядер из-за столкновений с ядрами атомов межзвездного газа (в основном с протонами и альфа-частицами). Эти столкновения увеличивают относительное количество легких ядер и уменьшают содержание тяжелых элементов (особенно железа).
Космические лучи нагревают разреженный газ (вплоть до больших расстояний от плоскости Галактики) до температуры в несколько миллионов градусов, подобно тому как волны, возникающие в конвективной зоне на Солнце, нагревают солнечную хромосферу и корону. Этот горячий разреженный газ, образующий обширное гало, относится к сфероидальной подсистеме Галактики и называется галактической короной.
Гамма-излучение Галактики. Проходя через относительно плотные области диффузной среды в Галактике, космические лучи взаимодействуют с веществом. Результатом этого взаимодействия является интенсивное гамма-излучение Галактики, отличающееся сильной концентрацией к галактическому экватору.