
- •Алюминий и его сплавы Выбор режимов термической обработки алюминиевых сплавов
- •Технология гомогенизационного отжига и отжига слитков для снятия напряжений
- •Общая схема производства плит и листов из алюминиевых сплавов.
- •Технология отжига листов термически не упрочняемых алюминиевых сплавов
- •Технология термической обработки листов термически упрочняемых сплавов
- •Технология термической обработки прессованных изделий
- •Технология термической обработки труб
- •Технология термической обработки литейных алюминиевых сплавов
- •Брак при термической обработке и методы контроля
- •Магний и его сплавы
- •Технология термической обработки литейных сплавов
- •Технология термической обработки деформируемых магниевых сплавов
- •Дефекты термической обработки
- •Титан и его сплавы
- •Выбор режимов отжига
- •Прокаливаемость
- •Взаимодействие титана и его сплавов с газами.
- •Способы удаления газонасыщенных слоев
- •Вакуумный отжиг титана и его сплавов
- •Химико-термическая обработка
- •Дефекты термически обработанных изделий и полуфабрикатов
Прокаливаемость
В применении к титановым сплавам под прокаливавмостью понимают глубину проникновения зоны, в которой скорость охлаждения при закалке была достаточна для фиксации метастабильных фаз, дающих при последующем старении заметный эффект упрочнения. Количественная оценка прокаливаемости титановых сплавов значительно сложнее, чем для сталей. При закалке титановых сплавов могут образоваться не только упрочняющие фазы и а', но и мягкие метастабильные фазы а'' и мет, так что закаленный сплав может быть менее прочен чем отожженный. При удалении от поверхности в закаленных титановых полуфабрикатах.и изделиях нет такого резкого изменения твердости, какое характерно для сталей. Поэтому о прокаливаемости титановых сплавов судят по свойствам после старения.
Рис. 5. Зависимость твердости от расстояния l до закаливаемого торца образцов сплава ВТЗ-1, подвергнутых торцевой закалке (1) с температур 1000 (а), 900 (б) и 850 0 С (в) и последующему старению (2) при 5000 С в течение 1 ч. (Б.Колачев, Т.В. Фролова, В.С. Лясоцкая и другие).
Взаимодействие титана и его сплавов с газами.
При нагреве титана и его сплавов на воздухе происходит их взаимо ействие с кислородом и парами воды, а азот реагирует с металлом из-за меньших скоростей взаимодействия.
В газонасыщенном слое выделяют альфированный и переходиный слои. Альфированный слой отличается по структуре от основного металла повышенным содержанием а-фазы, что легко оценивается металлографическим анализом. Переходный слой микроструктуре не отличается заметно от основного металла, но его наличие и глубину проникновения можно оценить по лее высокой микротвердости по сравнению с основным металлом.
С повышением температуры и увеличением продолжительности выдержки толщина газонасыщенного слоя титана возрастает, особенно интенсивно >800 °С. Титановые сплавы окисляются при нагреве на воздухе меньше, чем титан. Интенсивность окисления промышленных а + -титановых сплавов возрастает с увеличением содержания в них -стабилизаторов.
О толщине оксидной пленки на поверхности титана и его сплавов можно приближенно судить по ее цвету. В табл. 9 приведены цвета «побежалости» титана после окисления на воздухе в течение 1 ч при разных температурах и приближенная толщина оксидной пленки, соответствующая тому или иному цвету.
Таблица 9. Окраска образцов титана, окисленных при разных температурах в течение 1 ч., и толщина оксидной пленки
t, 0С
|
Цвет |
Толщина, нм |
350 |
Свет-то- желтый |
34,4 |
400 |
Желто-коричневый |
43,4 |
450 |
Коричнево-фиолетовый |
45,6 |
500 |
Фиолетово-синий |
51,0 |
550 |
Голубой |
53,6 |
600 |
Желто-красный |
84,2 |
650 |
Грязно-фиолетовый |
204 |
700 |
Серый блестящий |
— |
750 |
Серый матовый |
— |
800 |
Светло-серый |
— |
850 |
Беловатый |
--- |
Газонасыщенные слои, образовавшиеся при высоких температурах, снижают механические свойства титановых сплавов, особенно сильно при циклических нагрузках. Под действием напряжений происходит растрескивание газонасыщенных слоев с образованием большого количества микротрещин, что и облегчает разрушение. Помимо этого окалина и аль- фированные слои .снижают технологическую пластичность при обработке давлением, затрудняют механическую обработку резанием, повышая износ инструмента.
Как уже отмечалось выше, водород вызывает водородную хрупкость. Поэтому при разработке технологии термической обработки необходимо принимать меры не только против образования высокотемпературной окалины, но и наводороживания. Водород по объему полуфабрикатов и заготовок распределяется довольно равномерно; лишь при очень больших сечениях содержание водорода в центре металла может быть меньше, чем в поверхностном слое. Если водород проник в полуфабрикат или изделие в недопустимых количествах, то его можно удалить из металла единственным способом — вакуумным отжигом. Кислород проникает в титан на небольшую глубину, но при вакуумном отжиге не удаляется из металла. Га- зонасыщенные слои снимают травлением, механическими способами или какими-либо другими методами.
Таблица 10. Наводораживание титана ВТ1-0 (числитель) и сплава ВТ14 (знаменатель) при нагреве в печах разного типа
Режим нагрева |
Н2, % |
Исходное состояние Электрическая печь, 10000С, 4ч. Газовая печь, окислительная атмосфера, 10000С, 4ч. Газовая печь, восстановительная атмосфера, 10000С, 4ч. |
0,004/0,003 0,005/0,006 0,030/0,006 0,030/0,055 0,045/0,060 |