- •Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Проверить потенциальность поля вектора , найти потенциал.
Вариант 1
Изменить порядок интегрирования
.
Найти массу пластины, ограниченной линиями
,
если
- поверхностная плотность пластины в
точке.Найти объем тела, ограниченного поверхностями:
.Найти центр тяжести однородного тела, ограниченного указанными поверхностями:
.
Вычислить момент инерции относительно оси OX однородного участка линии
(первая арка).Вычислить площадь части поверхности
,
отсеченной плоскостью
.Найти производную скалярного поля
в точке
по направлению нормали к поверхности
,
образующей острый угол с положительным
направлением оси
.Найти работу поля вектора
при перемещении точки вдоль линии
от точки
к точке
.
Найти поток векторного поля
через часть поверхности
,
вырезанную плоскостью
непосредственно и с помощью формулы
Гаусса-Остроградского (нормаль внешняя
к замкнутой поверхности).Найти циркуляцию вектора
по контуру
с помощью формулы Стокса и непосредственно
(положительным направлением обхода
контура считать то, при котором точка
перемещается по часовой стрелке, если
смотреть из начала координат)..Проверить потенциальность поля вектора
,
найти потенциал.
Вариант 2
Изменить порядок интегрирования:
Найти массу пластины, ограниченной линиями
,
если
- поверхностная плотность пластины в
точке.
Найти объем тела ограниченного поверхностями:
Найти центр тяжести однородного тела, ограниченного указанными поверхностями:
Вычислить массу отрезка прямой AB, если линейная плотность в каждой точке
Вычислить статический момент относительно оси OZ однородного участка поверхности
.Найти производную скалярного поля
в точке
по направлению нормали к поверхности
,
образующей острый угол с положительным
направлением оси
.Найти работу поля вектора
при перемещении точки вдоль линии
от точки
к точке
.Найти поток векторного поля
через часть поверхности
,
вырезанную плоскостью
непосредственно и с помощью формулы
Гаусса-Остроградского (нормаль внешняя
к замкнутой поверхности).Найти циркуляцию вектора
по контуру
с помощью формулы Стокса и непосредственно
(положительным направлением обхода
контура считать то, при котором точка
перемещается по часовой стрелке, если
смотреть из начала координат).Проверить потенциальность поля вектора
,
найти потенциал.
Вариант 3
Изменить порядок интегрирования
.
Найти массу пластины, ограниченной линиями
,
если
- поверхностная плотность пластины в
точке.
Найти объем тела, ограниченного поверхностями:
(внутри конуса).
Найти центр тяжести однородного тела, ограниченного указанными поверхностями:
Вычислить массу дуги параболы
,
отсеченной параболой
,
если плотность в каждой точке равна
ординате этой точки.
Вычислить моменты инерции однородной треугольной пластинки
относительно координатных плоскостей.Найти производную скалярного поля
в точке
по направлению нормали к поверхности
,
образующей острый угол с положительным
направлением оси
.Найти работу поля вектора
при перемещении точки вдоль
линии L от
точки M
к точке
N, где L -
ломаная, соединяющая
точки
.Найти поток векторного поля
через часть поверхности
,
вырезанную плоскостью
непосредственно и с помощью формулы
Гаусса-Остроградского (нормаль внешняя
к замкнутой поверхности).Найти циркуляцию вектора
по контуру
с помощью формулы Стокса и непосредственно
(положительным направлением обхода
контура считать то, при котором точка
перемещается по часовой стрелке, если
смотреть из начала координат).
Проверить потенциальность поля вектора
.
Найти потенциал.
