
- •Конспект лекций модуля № 4 "Целевой курс" дисциплины "Распределенные программные системы и технологии" Тема 11. Системы параллельных вычислений
- •11.1.1. Общие понятия
- •11.1.2. Функции управления задачами
- •11.1.3. Взаимодействие задач
- •11.1.3.1 Типы взаимодействия
- •11.1.3.2 Выполнение взаимодействия
- •11.1.4. Синхронизация работы задач
- •11.2.1. Общие сведения
- •11.2.2. Основные понятия
- •11.2.3. Функции mpi
- •11.2.4. Функции управления процессами
- •11.2.3. Взаимодействие процессов
- •11.2.3.1 Прием/передача сообщений с блокировкой
- •11.2.3.2 Прием/передача сообщений без блокировки
- •11.2.3.3 Объединение запросов на взаимодействие
- •11.2.3.4 Совмещенные прием/передача сообщений
- •11.2.3.5 Коллективные взаимодействия процессов
- •12.1.2. Уровень заглушки и скелета
- •12.1.3. Уровень удаленных ссылок
- •12.1.4. Транспортный уровень
- •12.1.2. Взаимодействие
- •2.1.3 Идентификация объектов
- •2.1.4. Синхронизация вызовов методов
- •2.1.5. Безопасность
- •Тема 13. Сервисно-ориетированные архитектуры
- •13.1.1. Стандарт Web - сервисов
- •13.1.2. Взаимодействие Web-служб
- •13.1.3. Идентификация служб
- •13.1.5. Отказоустойчивость Web-служб
- •13.1.6. Безопасность Web-служб
- •13.2. Сервисно-ориентированная архитектура
- •13.2.1. Концепция soa
- •13.2.2. Характеристики соа
- •13.2.3. Компоненты соа
- •13.3. Оркестровка Web - сервисов
- •13.3.1. Основные понятия
- •13.3.2. Организация основанная на потоках работ
- •13.3.3. Язык bpel
- •Тема 14. Многоагентные системы
- •14.1. Определение агента
- •14.2. Применение агентов
- •14.2. Стандарты технологии мобильных агентов
- •14.2.1. Стандарт masif
- •14.2.2. Стандарт fipa
- •14.3. Языки взаимодействия агентов.
- •Тема 15. Распределенные базы данных
- •15.1. Определение Дэйта.
- •15.2. Свойства распределенных бд
- •15.2.1 Целостность данных
- •15.2.2 Прозрачность расположения
- •15.2.3 Обработка распределенных запросов
- •15.2.4 Межоперабельность
- •15.2.5 Технология тиражирования данных
- •15.2.6 Архитектура "клиент-сервер"
- •15.3.1 Концепция ejb
- •15.3.2. Компоненты ejb
- •15.3.3 Этапы создания ejb-проектов
- •Тема 16. Аппаратное обеспечение распределенных встроенных систем
- •16.1. Перспективы развития и области применения распределенных встроенных систем
- •16.2. Функциональная классификация микропроцессоров
- •16.2.1. Процессоры общего назначения и специализированные процессоры
- •16.2.2. Микроконтроллеры
- •16.2.3. Процессоры цифровой обработки сигналов
- •16.2.4. Конфигурируемые процессоры и перепрограммируемы системы на кристалле
- •16.2.5. Эволюция микропроцессоров
11.2.3. Функции mpi
Все функции MPI делятся на три категории:
Блокирующие - останавливают (блокируют) выполнение процесса до тех пор, пока производимая ими операция не будет выполнена. Неблокирующие функции возвращают управление немедленно, а выполнение операции продолжается в фоновом режиме; за завершением операции надо проследить особо. Неблокирующие функции возвращают квитанции ("requests"), которые погашаются при завершении. До погашения квитанции с переменными и массивами, которые были аргументами неблокирующей функции, ничего делать нельзя.
Локальные - не инициируют пересылок данных между ветвями. Большинство информационных функций является локальными, т.к. копии системных данных уже хранятся в каждой ветви. Функция передачи MPI_Send и функция синхронизации MPI_Barrier НЕ являются локальными, поскольку производят пересылку. Следует заметить, что, к примеру, функция приема MPI_Recv (парная для MPI_Send) является локальной: она всего лишь пассивно ждет поступления данных, ничего не пытаясь сообщить другим ветвям.
Коллективные - должны быть вызваны всеми ветвями-абонентами того коммуникатора, который передается им в качестве аргумента. Несоблюдение для них этого правила приводит к ошибкам на стадии выполнения программы (как правило, к повисанию).
11.2.4. Функции управления процессами
Как и PVM пакет MPI имеет функции для запуска и остановки процессов.
int MPI_Init( int* argc, char*** argv)
MPI_Init - инициализация параллельной части приложения. Реальная инициализация для каждого приложения выполняется не более одного раза, а если MPI уже был инициализирован, то никакие действия не выполняются и происходит немедленный возврат из подпрограммы. Все оставшиеся MPI-процедуры могут быть вызваны только после вызова MPI_Init.
Возвращает: в случае успешного выполнения - MPI_SUCCESS, иначе - код ошибки. (То же самое возвращают и все остальные функции, рассматриваемые в данном руководстве.)
int MPI_Finalize( void )
MPI_Finalize - завершение параллельной части приложения. Все последующие обращения к любым MPI-процедурам, в том числе к MPI_Init, запрещены. К моменту вызова MPI_Finalize некоторым процессом все действия, требующие его участия в обмене сообщениями, должны быть завершены.
11.2.3. Взаимодействие процессов
11.2.3.1 Прием/передача сообщений с блокировкой
int MPI_Send(void* buf, int count, MPI_Datatype datatype, int dest, int msgtag, MPI_Comm comm)
buf - адрес начала буфера посылки сообщения
count - число передаваемых элементов в сообщении
datatype - тип передаваемых элементов
dest - номер процесса-получателя
msgtag - идентификатор сообщения
comm - идентификатор группы
Блокирующая посылка сообщения с идентификатором msgtag, состоящего из count элементов типа datatype, процессу с номером dest. Все элементы сообщения расположены подряд в буфере buf. Значение count может быть нулем. Тип передаваемых элементов datatype должен указываться с помощью предопределенных констант типа. Разрешается передавать сообщение самому себе.
Блокировка гарантирует корректность повторного использования всех параметров после возврата из подпрограммы. Выбор способа осуществления этой гарантии: копирование в промежуточный буфер или непосредственная передача процессу dest, остается за MPI. Следует специально отметить, что возврат из подпрограммы MPI_Send не означает ни того, что сообщение уже передано процессу dest, ни того, что сообщение покинуло процессорный элемент, на котором выполняется процесс, выполнивший MPI_Send.
int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source, int msgtag, MPI_Comm comm, MPI_Status *status)
OUT buf - адрес начала буфера приема сообщения
count - максимальное число элементов в принимаемом сообщении
datatype - тип элементов принимаемого сообщения
source - номер процесса-отправителя
msgtag - идентификатор принимаемого сообщения
comm - идентификатор группы
OUT status - параметры принятого сообщения
Прием сообщения с идентификатором msgtag от процесса source с блокировкой. Число элементов в принимаемом сообщении не должно превосходить значения count. Если число принятых элементов меньше значения count, то гарантируется, что в буфере buf изменятся только элементы, соответствующие элементам принятого сообщения. Если нужно узнать точное число элементов в сообщении, то можно воспользоваться подпрограммой MPI_Probe.
Блокировка гарантирует, что после возврата из подпрограммы все элементы сообщения приняты и расположены в буфере buf.
Получение информации о структуре ожидаемого сообщения с блокировкой. Возврата из подпрограммы не произойдет до тех пор, пока сообщение с подходящим идентификатором и номером процесса-отправителя не будет доступно для получения. Атрибуты доступного сообщения можно определить обычным образом с помощью параметра status. Следует обратить внимание, что подпрограмма определяет только факт прихода сообщения, но реально его не принимает.