
- •Розділ 1. Аналіз і дослідження діяльності підприємства тов «завод укрбудмаш»
- •Загальна характеристика галузі машинобудування в Україні
- •1.2. Загальна характеристика тов «завод укрбудмаш»
- •1.3 Ринки збуту тов «завод укрбудмаш»
- •1.4. Характеристика відділу планування
- •1.5. Задачі та функції відділу планування
- •1.6. Права та обов’язки працівників відділу планування
- •1.7.Характеристика аіс підприємства, його програмного та технічного забезпечення
- •1.8. Аналіз статистичних даних про фінансово-господарську діяльність підприємства
- •1.9. Висновки до 1 розділу
- •Розділ 2. Моделювання процесів управління виробництвом
- •2.1. Моделювання виробничого процесу тов «завод укрбудмаш»
- •2.1.1. Основні поняття теорії мереж Петрі
- •2.1.2. Застосування мереж Петрі для побудови моделі виробничого процесу
- •2.2. Моделювання системи контролю якості продукції підприємства тов «укрбудмаш»
- •2.2.1. Потоки подій та їх основні характеристики
- •2.2.2. Дискретні марковські процеси, їх характеристики
- •2.2.3. Побудова математичної моделі надійності обслуговування системи підприємства
- •2.3. Побудова моделі системи обслуговування обладнання
- •2.3.1. Теорія масового обслуговування та застосування її у моделюванні виробничих процесів
- •2.3.2. Системи масового обслуговування з очікуванням. Одноканальна смо з очікуванням
- •2.3.3. Застосування системи масового обслуговування для моделювання процесу роботи техніка
- •2.4. Побудова прогнозної багатофакторної моделі прибутку підприємства
- •2.4.1. Узагальнена багатофакторна регресійна модель
- •2.4.2. Основні стадії побудови багатофакторних прогнозних моделей
- •2.4.3. Моделювання прибутку підприємства тов «укрбудмаш»
- •Розв’язок задачі
- •Лист 1. Лінійна багатофакторна модель
- •Лист 2. Показникова багатофакторна модель.
- •2.5. Висновки до 2 розділу
- •Розділ 3. Економічна частина
- •3.1 Опис програмного продукту
- •3.2 Кошторис витрат для впровадження пп
- •3.3 Ефект від впровадження пп
- •3.4 Розрахунок індексу прибутковості та періоду окупності
- •3.5. Висновки до 3 розділу
- •Розділ 4. Охорона праці
- •4.1 Система управління охороною праці на тов «Завод Укрбудмаш»
- •4.2 Основні вимоги до обладнання робочих місць і умов праці
- •4.3 Вимоги із пожежної безпеки на підприємстві
- •4.4. Висновки до 4 розділу
- •Основні вимоги до обладнання робочих місць і умов праці;
- •Вимоги із пожежної безпеки на підприємстві.
- •Висновки
- •Список використаних джерел
- •Додатки
2.1.2. Застосування мереж Петрі для побудови моделі виробничого процесу
Постановка задачі: Розробити модель виробничого процесу яка дозволяє продивитись весь цикл створення нового обладнання. Врахувати що сировини на складі підприємства може не бути і її потрібно заказати. Також необхідно звітувати директору про випуск нової продукції.
Зміст позицій: 1 – директор; 2 – начальник науково-інноваційного відділу; 3 – науково-інноваційний відділ; 4 – виробництво; 5 – склад; 6 – постачальник; 7 – цех; 8 – обладнання.
Зміст переходів: t1 – наказ про впровадження нового обладнання; t2 – звітність директору; t3 – наказ відділу приступити до розробки нового обладнання; t4 – затвердження обладнання; t5 – передача схем нового обладнання на виробництво; t6 – запит про сировину; t7 – замовлення сировини; t8 – доставка сировини; t9 – передача сировини на цех; t10 – виготовлення обладнання; t11 – аналіз нового обладнання; t12 – звіт про нову продукцію;
Схема роботи системи підприємств має наступний вигляд (рис. 2.1).
Рисунок 2.1. – Мережа Петрі виробничого процесу
Граф досяжності має наступний вигляд (рис. 2.2).
Рисунок 2.2. – Граф досяжності
Для даної задачі отриманому графу досяжності відповідає наступна матриця інцидентності (рис. 2.3).
Рисунок 2.3. – Матриця інцидентності
Для даної задачі можна зробити висновок, що мережа правильна, обернена, жива, пасивних переходів немає (рис. 2.4).
Рисунок 2.4. – Властивості побудованої мережі Петрі
Висновок: отже, при побудові мережі Петрі було встановлено, що вона є безпечною, оберненою, живою, правильною і відноситься до класу систем – автомат. Це дає право стверджувати що система, яка діє на підприємстві є розумно розробленою і функціонує правильно.
2.2. Моделювання системи контролю якості продукції підприємства тов «укрбудмаш»
2.2.1. Потоки подій та їх основні характеристики
Потоком подій називається послідовність однорідних подій, що з’являються у випадкові моменти часу. Потоки подій розрізняють за їх внутрішньою структурою:
за законами розподілу інтервалів
між подіями;
за їх залежністю або незалежністю між собою.
Потоки подій мають певні властивості: ординарність, відсутність післядії, стаціонарність, регулярність.
Ординарність.
Потік
називається ординарним, якщо події в
ньому з’являються поодинці, а не по
два, по три тощо. Ординарність потоку
означає, що ймовірність попадання на
елементарну ділянку
двох або більше подій досить мала в
порівнянні з ймовірністю попадання на
неї рівно однієї події, тобто при
ця ймовірність є нескінченно малою
вищого порядку. Сума ймовірностей групи
несумісних подій визначається за
формулою 2.1.
(2.1)
де
– імовірність попадання на ділянку
рівно однієї події;
– імовірність не попадання на ділянку
жодної події;
–
імовірність попадання на ділянку
двох або більше подій.
Для ординарного потоку подій ймовірність настільки мала в порівнянні з іншими доданками, що нею можна знехтувати.
або
(2.2)
Інтенсивність
(щільність) ординарного потоку – це
межа відношення математичного сподівання
випадкової величини
числа подій, що потрапляють на елементарну
ділянку
до довжини цієї ділянки
.
(2.3)
Фізичний
зміст інтенсивності
потоку подій – це середнє число подій,
що припадає на одиницю часу елементарної
ділянки
,
що примикає до
.
Інтенсивність потоку подій
– це невід’ємна функція часу
,
яка має розмірність [1/год.]. Середнє
число подій ординарного потоку, що
приходиться на інтервал часу
,
що примикає до точки
,
дорівнює
,
(2.4)
А при постійній інтенсивності потоку
(2.5)
Відсутність
післядії.
Потік подій називається потоком без
післядії, якщо ймовірність попадання
будь-якого числа подій на одну з ділянок
не залежить від того, скільки їх потрапило
на інші ділянки. Для будь-якого моменту
часу
майбутні моменти настання потоку подій
(при
)
не залежить від того , в які моменти
наступали події у минулому (при
).
Якщо
потік без післядії, ординарний і має
постійну інтенсивність
,
то число подій
,
що потрапляють на ділянку
,
має розподіл Пуассона параметром
.
(2.6)
Якщо
,
тоді число подій
,
потрапляють на ділянку довжини
,
також розподілено за законом Пуассона,
але параметр
у цьому випадку не залежить від довжини
ділянки
і місця її розташування.
. (2.7)
Розподіл у цьому випадку має вигляд:
(2.8)
Ординарний потік подій, у якому відсутня післядія, називається пуассонівським потоком.
Стаціонарність.
Потік називається стаціонарним, якщо
його ймовірністні характеристики не
змінюються з часом. Іншими словами,
кількість подій
і
,
що потрапляють на дві ділянки однакової
довжини, матимуть однаковий розподіл.
Для стаціонарного потоку подій його
інтенсивність
постійна.
. (2.9)
Ординарний
стаціонарний потік без післядії
називається простим або стаціонарним
пуассонівським потоком. Імовірність
того, що за проміжок часу
завжди наступить
подій
(2.10)
Регулярність. Потік подій, у якому інтервали між подіями однакові і рівні невипадковій величині, називається регулярним.