
- •Оглавление
- •Часть I
- •6. Закономерности формирования мощности и температурного режима многолетнемерзлых толщ
- •7. Экзогенные геологические процессы в криолитозоне
- •8. Криолитозона Западной Сибири
- •Часть II Подземные воды территории развития многолетнемерзлых пород
- •9. Особенности гидрогеологии мерзлой зоны литосферы
- •10. Подземные воды таликов
- •11. Некоторые особенности гидродинамического режима подмерзлотных водоносных горизонтов
- •Часть I
- •1. Введение в геокриологию
- •1.1. Предмет геокриологии; понятия и термины;
- •1.3. Структура современной геокриологии и ее связь с другими
- •2. Криогенные периоды в истории Земли и причина их появления
- •2.1. Ранние этапы развития планеты
- •2.2. Основные этапы истории развития криолитозоны в позднем
- •2.3. Причины становления ледниково-криогенных периодов
- •3. Термодинамические и климатические условия формирования мерзлых толщ
- •3.1 Энергетический баланс Земли
- •3.2 Температурное поле горных пород
- •3.3. Задача о промерзании и протаивании горных пород
- •4. Состав, строение и свойства мерзлых пород
- •4.1. Состав мерзлых дисперсных (осадочных) пород
- •4.2. Криогенное строение мерзлых пород
- •4.3. Физико-механические, теплофизические и водные свойства мерзлых пород
- •5. Сезонное промерзание и протаивание горных пород
- •5.1. Формирование глубин сезонного промерзания и протаивания
- •5.2. Классификация типов сезонного промерзания и сезонного оттаивания почв и горных пород
- •5.3. Влияние различных факторов природной среды на формирование температурного режима и мощность стс и смс
- •6.1. Современные представления о развитии многолетнемерзлых пород
- •6.2. Зависимость мощности криолитозоны от периодических изменений климата и геолого-географических факторов.
- •7. Экзогенные геологические процессы в криолитозоне
- •7.1. Физические и физико-химические процессы в промерзающих, мерзлых и оттаивающих породах
- •7.2.Криогенные (мерзлотные) геологические процессы и явления
- •7.2.1. Морозное пучение дисперсных пород.
- •7.2.3.Термокарст
- •7.2.4. Наледеобразование
- •7.2.5. Криогенные склоновые (гравитационные) процессы
- •7.2.6. Термогидрогенные процессы
- •8. Криолитозона Западной Сибири
- •8.1. История формирование мерзлых толщ
- •8.2. Современное строение криолитозоны
- •8.3. Некоторые результаты температурного мониторинга криолитозоны Надым-пуровского междуречья
1.3. Структура современной геокриологии и ее связь с другими
науками.
Геокриология – наука геологического цикла, она связана со многими разделами геологии: литологией, гидрогеологией, тектоникой, четвертичной геологией, геофизикой и пр. В то же время мерзлая зона литосферы формировалась при определенных физико-географических условиях, существующих на поверхности Земли, поэтому геокриология должна использовать достижения метеорологии, гидрологии, океанологии, гляциологии и др. наук географического профиля.
Практические направления геокриологии связаны с запросами промышленного и гражданского строительства, вследствие чего она использует методы технических и физико-математических наук.
В настоящее время развитие геокриологии осуществляется по следующим основным направлениям:
- Физика, химия и механика мерзлых пород;
- Динамическая геокриология;
- Литогенетическая геокриология (или криолитология);
- Региональная и историческая геокриология;
- Инженерная геокриология;
- Геокриологический прогноз и геоэкология криолитозоны;
- Планетарная криология.
Физика, химия и механика мерзлых пород. Задачей этого направления является изучение закономерностей протекания физико-химических, механических и теплофизических процессов в мерзлых, промерзающих и оттаивающих горных породах. Физика, химия и механика мерзлых пород в целом является важнейшей теоретической базой для всех других направлений.
Динамическая геокриология изучает тепловое состояние Земли и факторы, влияющие на его изменение. Прямой задачей динамической геокриологии является рассмотрение процессов, приводящих к формированию сезонно- и многолетнемерзлых пород. Разработка термодинамических и теплофизических основ формирования мерзлых толщ базируется на изучении теплообмена в системе «атмосфера – литосфера», радиационного и водно-теплового балансов, температурного режима и фазовых переходов влаги, содержащейся в горных породах. Другой важной частью динамической геокриологии является изучение и прогнозирование мерзлотно-геологических (геокриологических) процессов, выявляемых при региональных исследованиях.
Литогенетическая геокриология (криолитология) выявляет общие и частные закономерности формирования структурно-текстурные особенностей и строения мерзлых осадочных пород и льдов, их минералогического и химического состава. Важная роль при этом отводится учению о фациях. Понятие «фация» введено в геологию А.Гресли в 1838 г., наиболее полно отразил сущность понятия фации Д.В.Наливкин (1956). В геокриологии автором мерзлотного фациального анализа является, в первую очередь, Евгений Маркович Катасонов.
Основные задачи этого научного направления: исследование вещественного состава и структурно-текстурных особенностей мерзлых пород и льдов; выявление на основе мерзлотно-фациального анализа особенностей и закономерностей формирования различных генетических типов мерзлых отложений.
Региональная и историческая геокриология изучает зональные и региональные закономерности формирования и распространения мерзлых пород; особенности их распространения по площади и в разрезе; криогенное строение, мощность и температурный режим мерзлых толщ и подземных льдов; влияние на их образование многолетних колебаний климата, ландшафтно-геоморфологических и геологических условий; развитие и существование геологических процессов и явлений. Изучение взаимодействия мерзлых толщ с подземными водами, различными флюидами и газогидратами – также одна из основных задач, решаемых региональной геокриологией. Наряду с криолитологами специалисты рассматриваемого направления занимаются выяснением истории возникновения и развития мерзлых толщ в отдельном регионе и на всей планете в целом.
Инженерная геокриология представляет собой раздел практической геокриологии, она занята инженерно-геологическим обеспечением проектирования, строительства и эксплуатации инженерных сооружений в криолитозоне; разрабатывает наиболее надежные и экономически выгодные решения при хозяйственном освоении территории.
Вопросы теплофизического и механического взаимодействия инженерных сооружений с мерзлыми, промерзающими и протаивающими грунтами решаются на основе разработок инженерной теплофизики и механики грунтов.
Геокриологический прогноз и геоэкология криолитозоны. Задачами этого направления являются выяснение характера взаимодействия объектов строительства и мерзлых пород, устойчивости компонентов природной среды к влиянию изменяющихся естественных и антропогенных факторов. В настоящее время геокриологический прогноз является обязательной составной частью исследований мерзлых пород для целей строительства, поскольку фазовые переходы воды в грунтах резко меняют их физико-механические свойства.
Усиливающиеся техногенные нагрузки на природную среду ведут к существенному негативному изменению существующих геокриосистем. Криолитозона очень уязвима в экологическом отношении, а восстановление природных ландшафтов в условиях Севера происходит весьма медленно. Последствия антропогенного воздействия на криолитозону в ряде случаев имеют слабо предсказуемый и трудно контролируемый характер, поэтому требуют безотлагательного решения сложных экологических задач.
Криология планет – одно из самых молодых направлений геокриологии, оно зиждется на достижениях астрономии и космонавтики. Познание закономерностей развития криогенных оболочек планет солнечной системы, состоящих не только из водного, но и углекислотного и метанового льда, облегчит человеку познание криогенной оболочки Земли.