
- •1. Цифровые модели местности
- •3. История создания gps
- •6. Способы наблюдений
- •7.Источники ошибок
- •8. Дифференциальный режим
- •9. Статический метод (Static Positioning)
- •Псевдостатический метод (Pseudo-Static Positioning)
- •Быстростатический метод (Rapid Static Positioning)
- •1. Статика
- •10. Кинематический метод “стой-иди” (Stop-and-Go Kinematic Positioning)
- •Кинематический метод с инициализацией “на ходу” (Kinematic with On - the Fly Initialization)
- •2. Кинематика
- •11. Rtk кинематика
- •12. Системы координат
- •Трансформация координат
- •Трансформация Гельмерта
- •Избранная трансформация Гельмерта
- •17. Состав системы глонасс
- •Принципы работы
- •22. Совместная обработка данных gps и глонасс
- •23. Что такое эфемериды?
- •27. Система координат пз-90
- •30. Система геодезических координат 1995 года (ск-95)
- •31 Вынос точек в натуру Способ прямоугольных координат
- •1.6.3. Способ полярных координат
- •1.6.5. Способ проектного полигона
- •Ункционирование системы gps
27. Система координат пз-90
Параметры Земли 1990 г. ПЗ-90 были определены Топографической службой Вооруженных сил Российской Федерации. Параметры ПЗ-90 включают:
фундаментальные астрономические и геодезические постоянные;
характеристики координатной основы (параметры земного эллипсоида, координаты пунктов, закрепляющих систему, параметры связи с другими системами координат);
модели нормальных и аномальных гравитационных полей Земли, локальные характеристики гравитационного поля (высоты квазигеоида над общим земным эллипсоидом ианомалии силы тяжести).
Входящая в состав ПЗ-90 система координат иногда называется СГС-90 (Спутниковая геоцентрическая система 1990 г.). Параметры Земли ПЗ-90 заменили предыдущие наборы ПЗ-77 и ПЗ-85. Параметры Земли ПЗ-90 получены по результатам почти 30 миллионов фотографических, радиодальномерных, доплеровских, лазерных и альтиметрических измерений спутника Гео-ИК с привлечением радиотехнических и лазерных измерений дальностей до спутников систем ГЛОНАСС и "Эталон" (Антонович, 2005).
Начало системы расположено в центре масс Земли. Ось Z направлена к среднему северному полюсу на среднюю эпоху 1900 - 1905 гг. (МУН). Ось X лежит в плоскости земного экватора эпохи 1900 - 1905 гг., и плоскость (XOZ) определяет положение нуль-пункта принятой системы счета долгот. Ось Y дополняет систему координат до правой. Геодезические координаты В, L, Н относятся к общему земному эллипсоиду с большой полуосью а и сжатием a (табл. 1.1). Ось вращения (малая полуось) совпадает с осью Z, плоскость начального меридиана (L = О) совпадает с плоскостью (XOZ).
Спутниковая геоцентрическая система координат закреплена на территории СНГ координатами 30 опорных пунктов космической геодезической сети со средними расстояниями 1-3 тысячи километров. Точность взаимного расположения пунктов характеризуется ошибками в 10, 20 и 30 см для расстояний соответственно в 100, 1 000 и 10 000 км. Ошибки привязки СГС-90 к геоцентру по абсолютной величине не превышают 1.5 м. Планетарные модели гравитационного поля Земли получены в виде разложений в ряд по сферическим функциям до 36 и 200 степени и порядка систем точечных масс (32 000 параметров). Средняя квадратическая ошибка высоты геоида над эллипсоидом равна 1.5 м, что не уступает зарубежным моделям, а на территории СНГ превосходит их по точности. Для системы ПЗ-90 получены параметры связи с системами СК-42 и WGS-84
27. Система геодезических координат 1942 года (СК-42)
В 1930 году под общим руководством Ф.Н. Красовского вычислительное бюро Главного геодезического управления приступило к уравниванию 8 полигонов 1 класса для Европейской части СССР. Позднее к этим полигонам был присоединен Уральский полигон. Вычисления велись относительно эллипсоида Бесселя методом развертывания, за начальный пункт принимался пункт Саблино. Основная особенность и главный недостаток метода развертывания состоит в том, что результаты измерений, выполненные на земной поверхности и редуцированные к уровню моря при дальнейшей обработки считались выполненными на поверхности референц-эллипсоида без каких либо поправок за несовпадение поверхности эллипсоида и уровенной поверхности нулевой высоты.
Работы по уравниванию триангуляции были завершены в 1932 году и принятая система координат получила название системы 1932 года. В те же годы в ЦНИИГАиК под руководством Ф.Н. Красовского и А.А. Изотова начались работы по выводу референц-эллипсоида, наилучшим образом подходившего для территории СССР. Под руководством и участием М.С. Молоденского велись работы по определению высот геоида по данным астрономо-гравиметрического нивелирования.
В 1942 году начались работы по переуравниванию АГС. Совместным решением Главного управления геодезии и картографии (ГУГК) и Военно-топографического управления Генерального Штаба Министерства Обороны (ВТУ ГШ МО) от 4 июня 1942 года в качестве референц-эллипсоида при уравнивании был принят эллипсоид (в последующем получившего имя Красовского) со следующими параметрами:
большая полуось а = 6378245,0 м обратное сжатие a = 298,3,
Систему координат, в которой велись вычисления, было решено именовать системой координат 1942 года. Установление системы координат 1942 года предполагало также вывод значений исходных геодезических дат в исходном пункте геодезической сети Пулково. В состав исходных геодезических дат входят геодезические широта и долгота исходного пункта на референц-эллипсоиде Красовского, геодезический азимут исходного направления, составляющие уклонения отвесной линии и высота квазигеоида над эллипсоидом Красовского в исходном пункте. Эти данные в совокупности определяют пространственную ориентировку осей референц-эллипсоида в теле Земли при выполнении следующих теоретически строгих условий:
- малая ось эллипсоида параллельна направлению к положению среднего полюса; - плоскость нулевого меридиана параллельна плоскости начального астрономического меридиана; - поверхность референц-эллипсоида имеет в среднем наименьшие уклонения от поверхности геоида на всей территории расположения обрабатываемой геодезической сети.
Реальная строгость выполнения перечисленных условий определяется точностью всех использованных астрономо-геодезических данных и не зависит от конкретного выбора исходного пункта. Значения исходных геодезических дат устанавливают систему отсчета координат, но не определяют внутреннюю точность самой геодезической сети. Точность взаимного положения геодезических пунктов в сети также не зависит от местоположения исходного пункта, а также от значений исходных геодезических дат. Подобное установление по существу референцных систем координат был единственно возможным в то время при использовании традиционных астрономо-геодезических измерений, выполняемых на земной поверхности. Исходные геодезические даты лишь частично определяют пространственное положение референцной системы в теле Земли через взаимное положение поверхности референц-эллипсоида и геоида для данной территории. Однако положение центра референц-эллипсоида относительно центра масс Земли остается неизвестным без привлечения дополнительной информации. Например, высот геоида над общим земным эллипсоидом или координат некоторого количества пунктов, известных в референцной и общеземной геоцентрической системе координат.
При установлении системы координат 1942 года в уравнивание вошли 87 полигонов АГС, покрывавших большую часть Европейской территории СССР и узкой полосой распространяющих координаты до Дальнего Востока. Обработка выполнялась на эллипсоиде Красовского с использованием метода проектирования. Метод проектирования в отличие от метода развертывания предполагал редуцирование данных геодезических измерений с земной поверхности через поверхность уровня моря на поверхность референц-эллипсоида. Определение высот квазигеоида и составляющих уклонений отвесных линий, необходимых для такого редуцирования, выполнялось с использованием гравиметрических данных: сначала для повышения точности интерполяции астрономо-геодезических уклонений отвеса и для расчета приращений высот квазигеоида, а затем с развитием гравиметрического метода высоты квазигеоида и составляющие уклонений отвесных линий определялись независимо от астрономо-геодезических данных.
Постановлением Совета Министров СССР от 7 апреля 1946 года № 760 на основе результатов выполненного уравнивания была введена единая система геодезических координат и высот на территории СССР - система координат 1942 года.
Дальнейшее распространение системы координат 1942 года на территорию СССР проводилось последовательно несколькими крупными блоками полигонов триангуляции и полигонометрии 1 класса. При присоединении каждого очередного блока координаты пунктов на границах блоков уравненной сети принимались за жесткие. Для сгущения АГС, сформированной в виде системы полигонов, выполнялось их заполнение сплошными сетями триангуляции 2 класса (рис. 2) [6]. Реальная схема полигонов рядов триангуляции 1 класса часто существенно отличалась от приведенной на этом рисунке.
Сплошные сети триангуляции 2 класса уравнивались в пределах отдельных полигонов с использованием уравненных координат пунктов триангуляции 1 класса в качестве исходных.
На смену СК-42 в результате совместного уравнивания трех самостоятельных, но связанных между собой, геодезических построений различных классов точности: КГС, ДГС, АГС по их состоянию на период 1991-93 годов, принялась новая система координат СК-95.
28. Картографическая проекция — это способ перехода от реальной, геометрически сложной земной поверхности к плоскости карты.
Сферическую поверхность невозможно развернуть на плоскости без деформаций — сжатия или растяжения. Это значит, что всякаякарта имеет те или иные искажения. Различают искажения длин площадей, углов и форм. На крупномасштабных картах (см. Масштаб) искажения могут быть практически неощутимы, но на мелкомасштабных они бывают очень велики. Картографические проекции обладают разными свойствами в зависимости от характера и размера искажений. Среди них различают:
Равноугольные проекции. Они сохраняют без искажения углы и формы малых объектов, зато в них резко деформируются длины и площади объектов. По картам, составленным в такой проекции, удобно прокладывать маршруты судов, но невозможно измерять площади;
Равновеликие проекции. Они не искажают площадей, но углы и формы в них сильно искажены. Карты в равновеликих проекциях удобны для определения размеров государства, земельных угодий; Равнопромежуточные. Они имеют постоянный масштаб длин по одному направлению. Искажения углов и площадей в них уравновешены;
Произвольные проекции. Они имеют искажения и углов и площадей в любых соотношениях. Проекции различаются не только по характеру и размеру искажений, но и по виду поверхности, которую используют при переходе от геоида к плоскости карты. Среди них различают:
Цилиндрические, когда проектирование с геоида идет на поверхность цилиндра. Цилиндрические проекции чаще всего применяют в картографии. Они обладают наименьшими искажениями в области экватора и средних широт. Эту проекцию чаще всего применяют для создания карт мира;
Конические. Эти проекции чаще всего выбирали для создания карт бывшего СССР. Наименьшее количество искажений при конических проекциях приходилось на параллели47° северной широты и 62° северной долготы. Это очень удобно, поскольку между указанными параллелями размещались основные хозяйственные зоны этого государства и здесь была сосредоточена максимальная нагрузка карт. Зато в конических проекциях сильно искажаются районы, лежащие в высоких широтах и акватории Северного Ледовитого океана;
Азимутальная проекция. Это такой вид картографической проекции, когда проектирование ведется на плоскость. Такой вид проекции применяют при создании картАнтарктиды или Арктики или какого-либо другого района Земли.
В результате картографических проекций каждой точке на земном шаре, обладающей определенными географическими координатами, соответствует одна и только одна точка на карте.
Кроме цилиндрической, конической и азимутальной картографических проекций, существует большой класс условных проекций, при построении которых пользуются не геометрическими аналогами, а лишь математическими уравнениями нужного вида.
29. Географические информационные системы (ГИС). В том, что владение точной и достоверной информацией есть важнейшее условие достижения успеха, уже никого не нужно убеждать. Но еще более важно уметь работать с имеющейся информацией. Методы работы с данными постоянно совершенствуются, и теперь уже привычно видеть документы, таблицы, графики, чертежи и картинки на экране компьютера. При помощи компьютера мы создаем и изменяем, извлекаем и анализируем данные. Одним из типов документов, в который компьютер вдохнул новую жизнь, стала и географическая карта. Существуют виды деятельности, в которых карты - электронные, бумажные или хотя бы представляемые в уме - незаменимы. Ведь многие дела невозможно начать, не выяснив предварительно, где именно находится точка приложения наших усилий. Даже в быту, мы ежечасно и иногда даже ежеминутно работаем с информацией о географическом положении объектов - магазин, детский сад, метро, работа, школа… Пространственное мышление естественно для нашего сознания. Последние десятилетия ознаменовались бумом в области применения карт, и связано это с возникновением Географических Информационных Систем, воплотивших принципиально новый подход в работе с пространственными данными. Географическая Информационная Система - или ГИС - это компьютерная система, позволяющая показывать необходимые данные на электронной карте. Карты, созданные с помощью ГИС, можно смело назвать картами нового поколения. На карты ГИС можно нанести не только географические, но и статистические, демографические, технические и многие другие виды данных и применять к ним разнообразные аналитические операции. ГИС обладает уникальной способностью выявлять скрытые взаимосвязи и тенденции, которые трудно или невозможно заметить, используя привычные бумажные карты. Мы видим новый, качественный, смысл наших данных, а не механический набор отдельных деталей. Электронная карта, созданная в ГИС, поддерживается мощным арсеналом аналитических средств, богатым инструментарием создания и редактирования объектов, а также базами данных, специализированными устройствами сканирования, печати и другими техническими решениями, средствами Интернет - и даже космическими снимками и информацией со спутников. Вся информация, полученная благодаря использованию технологий ГИС, используются не специалистами-географами, а обычными людьми - учеными, бизнесменами, врачами, адвокатами, чиновниками, маркетологами, строителями, экологами - и даже домохозяйками, если не они желают зря тратить время на обход магазинов. С помощью ГИС природоохранные организации следят за состоянием лесов, рек и почв. Коммунальные службы планируют и проводят мероприятия по обслуживанию городских сетей. Спасатели, пожарники и ремонтники оперативно рассчитывают оптимальные маршруты. ГИС все шире применяются в бизнесе. Так, например, владелец сети магазинов, поместив на карту потенциальных покупателей своей продукции, может обнаружить, в каких районах города они преимущественно живут. Перевозчики грузов повышают надежность доставки, экономят время и горючее за счет оптимизации маршрутов. Продавцы и покупатели недвижимости не могут без них принимать решения. Внимательный взгляд на карту - и обнаруживаются резервы в обслуживании, незамеченные конкурентами, намечаются оптимальные места для размещения рекламных щитов, планируются новые торговые точки и многое другое. ^ Как работает ГИС В отличие от обычной бумажной карты, электронная карта, созданная в ГИС, содержит скрытую информацию, которую можно «активизировать» по необходимости. Эта информация организуется в виде слоев, которые можно назвать тематическими, потому что каждый слой состоит из данных на определенную тему. Например, если вы изучаете определенную территорию, то один слой карты может содержать данные о дорогах, второй - о водоемах, третий – о проживающем там населении, четвертый о больницах и так далее. Вы можете просматривать каждый слой-карту по отдельности, а можете совмещать сразу несколько слоев, или выбирать отдельную информацию из различных слоев и выводить ее на карту. Вы также можете моделировать различные ситуации, всякий раз получая изображения в соответствии с поставленной задачей, причем без необходимости создавать новую карту. Из широкого круга вопросов, на которые ГИС может дать ответ, можно выделить следующие: Что находится на…? Где находится…? Что изменилось с…? Что если..? Давайте рассмотрим самый простейший пример того, как с помощью ГИС вы можете прийти к оптимальному решению. Например, вы решили построить сеть закусочных. Прежде всего, вам нужно будет выяснить ситуацию со спросом и предложением на рынке быстрого питания. То есть вы можете изучить количество и расположение уже существующих сетей быстрого питания и выделить для себя не охваченные предложением зоны. Затем нужно будет проанализировать возможные зоны обслуживания. Вероятно, вы захотите, чтобы они располагались в местах наибольшей концентрации потенциальных клиентов. Вы можете провести целенаправленный демографический анализ интересующих вас зон. Это могут быть учреждения, школы, станции метро, вокзалы, автостанции и так далее. Как только вы выяснили ситуацию с расположением потенциальных конкурентов и наличием достаточного количества клиентов, вы можете начать планировать расположение своих точек. При этом придется учитывать не только спрос и предложение, но и многие другие факторы. Например, нужно будет убедиться в наличие коммуникаций в местах предполагаемого размещения точек. Ведь вам необходимы будут вода и газ, иначе строительство собственных коммуникаций может принести дополнительные расходы. Налог на землю – тоже немаловажный фактор при расчете общих инвестиций в новый бизнес. Эту информацию вы также можете получить в базе данных ГИС. Конечным этапом вашей работы будет выведенная на экран компьютера карта, которая наглядно представит вам результаты вашего анализа. Первым слоем вашей карты будет карта города. Второй слой будет отражать расположение сети закусочных конкурентов. Третий слой - учреждения. Четвертый слой - станции метро, пятый - школы, шестой - автодороги и так далее. Таким образом вы составляете многослойную карту, слои которой вы можете “листать” по очереди, накладывать друг на друга и использовать вместе, получая более сложную картину, позволяющую вам видеть ситуацию в целом. Кроме того, данные, которые вы используете можно обновлять, что автоматически будет отражено на карте. И для этого вам не придется составлять десяток отдельных карт и выводить их на печать - ведь карты ГИС динамичные, а не статичные. И это только малая часть того, что может ГИС. Аэропорты и нефтедобывающие компании, транспортные организации и промышленные корпорации признают эффективность, экономичность и удобство в применении ГИС. Преимущества карт, созданных в ГИС, очевидны: вы можете работать с широким спектром данных и помещать их на карту; вы можете проводить анализ данных и моделировать различные сценарии решений, что поможет избежать ошибки; вы можете видеть результат в наглядной, а значит в более понятной форме; карты ГИС интерактивны, то есть вы можете вводить и изменять данные без необходимости всякий раз составлять новые карты. ^ Какие бывают ГИС? Существуют самые разнообразные компьютерные системы и отдельные программы, которые принято относить к ГИС. Самые компактные и маленькие помещаются на дискетах и заменяют обычные печатные городские справочные издания. На них можно просматривать и искать информацию, но нельзя помещать свою. С другой стороны, если перед вами стоят профессиональные задачи, требующие применения картографических знаний и технологий, то в вашем распоряжении мощные специализированные рабочие станции и комплексы. Если же вы хотите полноценно и интерактивно работать с картами, не приобретая картографического образования и разумно вкладывая средства, то лучшим решением будет выбрать ГИС, спроектированную для нужд обычного пользователя и снабженную привычным графическим интерфейсом. Такие ГИС удачно сочетают мощь и простоту в использовании. Вы можете, начав с естественных и несложных операций, постепенно подниматься до профессионального уровня, повышая на каждом шагу эффективность своей работы. Кроме многофункциональных ГИС, существуют также узкоспециальные, применяются в отдельных областях деятельности и требуют специального оборудования и методов обработки данных. Компоненты ГИС . При планировании использования ГИС для решения конкретных задач обычно рассматриваются следующие составляющие системы: · Компьютер · Программа · Данные · Пользователи · Метод Компьютер Компьютер для работы с ГИС может быть от простейших ПК и КПК до мощнейших суперкомпьютеров. Компьютер является основой оборудования ГИС и получает данные через сканер или из баз данных. Наблюдать и анализировать данные ГИС позволит монитор. Принтеры и плоттеры – наиболее распространенные средства для выведения конечных результатов проделанной на компьютере работы с ГИС. Программа Программное обеспечение ГИС обеспечивает функции и средства, необходимые для хранения, анализа и представления географической информации. Наиболее широко используемые программы ГИС - MapInfo, ARC/Info, AutoCAD Map и другие. Тем не менее, следует помнить, что программы имеют свою специфику: если необходима недорогая и несложная в применении программа - MapInfo будет наиболее приемлемой, поскольку она проста в работе и поддерживает многие особенности ГИС. ARC/Info пригодится для более специфического и дорогостоящего анализа, а для тех, кто уже использует AutoCad и хочет использовать ГИС - AutoCad Map может быть лучшим вариантом. Данные Выбор данных зависит от задачи и ваших финансовых возможностей. Данные могут быть использованы из различных источников – базы данных вашей организации, Интернет, коммерческие базы данных и т.д. Пользователи Люди, пользующиеся ГИС, условно могут быть разделены следующие группы: операторы ГИС, чья работа заключается в размещении данных на карте, инженеров/пользователей ГИС, чья функция заключается в анализе и дальнейшей работе с этими данными и теми, кому на основании полученных результатов нужно принять решение. Кроме того, ГИС могут пользоваться широкие слои населения через готовые программные приложения или Интернет. Метод Существует много способов создания карт в ГИС и методов дальнейшей работы с ними. Наиболее продуктивной будет та ГИС, которая работает в соответствии с хорошо продуманным планом и операционными подходами, соответствующими вашей задаче.