- •II. Диффузионное легирование введение
- •2.1. Физические основы процесса
- •2.1.1. Уравнения диффузии
- •2.1.2. Анализ решений уравнений диффузии
- •2.2. Технология диффузионного легирования
- •2.2.1. Способы проведения
- •2.2.2. Диффузанты.
- •2.2.3. Задачи диффузионной технологии.
- •2.2.4. Моделирование процесса диффузионного легирования
- •2. 3. Оборудование для проведения процессов диффузионного легирования и окисления
- •2. 3.1. Конструкция термических камер диффузионных печей
- •2.3.4. Кинетика нагрева лодочки с пластинами
- •2. 3.3. Элементы диффузионной системы
- •2. 3.4. Основные направления в создании диффузионно-окислительного обрудования
- •2. 3.5. Автоматизированные поточные линии диффузии (апл-д)
- •2.3.6. Пути совершенствования диффузионного оборудования .
- •Контрольные вопросы
2.2.2. Диффузанты.
В процессах диффузионного легирования используются следующие диффузанты:
газообразные – гидриды: бора – диборан (B2H6); фосфора – фосфин (РН3); мышьяка – арсин (AsH3); сурьмы – стибан (SbH3)
жидкие - галогениды бора, фосфора, мышьяка;
твердые - оксиды бора, фосфора, мышьяка и сурьмы.
Наиболее распространенным источником фосфора при диффузии из твердого источника является обезвоженный пентаоксид фосфора (фосфорный ангидрид Р2О5). Навеску Р2О5 помещают в зону источника и нагревают до 230—300°С (рис. 5., б). Газ-носитель захватывает молекулы пентаоксида и переносит их в зону диффузии. Между кремнием и Р2О5 происходит химическая реакция, в результате которой выделяются элементарный фосфор и оксид кремния, образующие стеклообразное соединение на поверхности пластины, из которого и происходит диффузия. Ряд желательных характеристик имеет жидкий источник фосфора (оксихлорид фосфора РОСl3). Он не гигроскопичен, имеет малый расход, стабилен по концентрации фосфора при длительном использовании. Механизм диффузии из жидкого источника аналогичен диффузии из Р2О5, так как жидкие источники реагируют с избыточным кислородом, образуя Р2О5. На поверхностную концентрацию влияют расход РОСl3, температура источника, диаметр диффузионной трубы, конструкция отражателя паров и состав газа-носителя. Как правило, по воспроизводимости и возможности регулирования параметров системы с источником в жидкой фазе лучше, чем системы с источником в твердой фазе. С тем же успехом используют трихлорид РС13 и пентафторид фосфора PF5.
В системах диффузии фосфора в открытой трубе из газообразного источника обычно используют фосфин РНз. Механизм диффузии из РНз такой же, как и из Р2О5, поскольку он превращается в фосфорный ангидрид в результате окисления, когда поступает в нагретую диффузионную камеру. Для регулирования поверхностной концентрации применяют разбавление РНз инертным газом. Фосфин не поглощает воду. С помощью этой системы можно получить низкую поверхностную концентрацию, однако управление концентрацией затрудняется вследствие неконтролируемого поглощения кварцевыми трубами ангидрида фосфора.
Самым распространенным источником в твердой фазе, используемым для диффузии бора в открытой трубе, является борный ангидрид В2О3. В зоне источника бора диффузионной трубы поддерживается температура порядка 900°С. При соприкосновении борного ангидрида с кварцем происходит расстекловывание и кварц становится непригодным к употреблению. Для устранения недостатков В2О3 ( или Н3ВО3) смешивают с SiO2, используя метод совместного осаждения из тетраэтилорто-силиката SiO (СН3СН2)4. Это позволяет регулировать поверхностную концентрацию в широких пределах.
Наиболее распространенный источник в жидкой фазе, используемый в системах диффузии бора в открытой трубе,— это трехбромистый бор ВВгз. Поверхностной концентрацией управляют, изменяя температуру диффузии, температуру источника и расход потока газа-носителя.
Наиболее удобным источником для управления процессом диффузии являются гидриды легирующих элементов. В качестве примера рассмотрим использование В2Н6. Диборан используют в восстановительной или нейтральной среде в разбавленном (Ar, N2, H2) виде, содержащем до 0,05% диборана. При Т > 300 0С происходит пиролиз В2Н6 с образованием элементарного бора. Лучшей воспроизводимостью обладают системы с окислительной средой, содержащей до 0,01% В2Н6 и до 2,5 % 02 в аргоне или азоте. Диборан взаимодействует с кислородом, образуя борный ангидрид и воду. Присутствие воды значительно увеличивает скорость испарения борного ангидрид, что обусловливает равномерное распределение диффузанта вдоль рабочей зоны вследствие образования летучих борных кислот, особенно метаборной НВО2. Недостатками В2Н6, как и всех гидридов, являются токсичность и легкая воспламеняемость на воздухе при концентрациях более 0,8%
На рис.6 представлены температурные зависимости коэффициентов диффузии В, Al, P и As в кремнии.
Рис. 6. Зависимость коэффициентов диффузии примесей в кремнии
Следует отметить, что при использовании сухих инертных газов и водорода наблюдается эрозия поверхности кремния. При использовании азота и наличии высокой температуры наблюдается образование нитридов, которые выпадают на поверхность.
Однако использование слабоувлажненных инертных газов или сухого кислорода приводит к хорошим результатом. Причиной тому, является образование на поверхности кремния тонкой пленки окисла, которая препятствует эрозии, но пропускает диффузант. Затем, при последующем травлении в плавиковой кислоте, она удаляется, и поверхность кремния остается гладкой.
В случае высокой влажности окисная пленка частично растворяется в парах воды и хуже осуществляет защиту поверхности. Влажность паров регулируется температурой воды в увлажнителе (барботере). Влажность газа-носителя оказывает также влияние на скорость испарения ряда диффузантов.
Преимущество данного метода — хорошая воспроизводимость, а его недостаток — трудность получения высокой поверхностной концентрации (выше 1018 см-3) и наличие в той или иной степени эрозии поверхности кремния.
Чтобы полностью избежать поверхностной эрозии чистые элементы III или V группы заменяют их окислами, в результате чего диффузия идет из стекловидных слоев, образующихся на поверхности. Особенно хорошие результаты это дает в случае применения соединений В2О3 и Р2О5.
Взаимодействие окислителя с кремниевой подложкой приводит к образованию слоя окисла SiO2. Упрощённо механизм диффузионного дегирования может быть представлен следующей схемой. Окислитель и примесь, содержащиеся в газовой фазе (при легирования из внешнего источника), адсорбируются окислом, растворяются в нем и взаимодействуют между собой, образуя примесно-силикатное стекло.
n P2O5 + m SiO2 → P2nSimО5n + 2m
В результате образуется двухслойная плёнка: стекло - двуокись кремния. Граница раздела этой двухслойной системы постепенно перемещается и достигает подложки. На внутренней границе протекают окислительно-восстановительные реакции типа:
Образующаяся элементарная примесь диффундирует в кремний.
Аналогично идет процесс и в случае применения В2О3:
n B2O3 + m SiO2 → В2n Sim03n +2m.
