Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диффузия .doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
12.02 Mб
Скачать

2.2.2. Диффузанты.

В процессах диффузионного легирования используются следующие диффузанты:

газообразные – гидриды: бора – диборан (B2H6); фосфора – фосфин (РН3); мышьяка – арсин (AsH3); сурьмы – стибан (SbH3)

жидкие - галогениды бора, фосфора, мышьяка;

твердые - оксиды бора, фосфора, мышьяка и сурьмы.

Наиболее распространенным источником фосфора при диффу­зии из твердого источника является обезвоженный пентаоксид фосфора (фосфорный ангидрид Р2О5). Навеску Р2О5 помещают в зону источника и нагревают до 230—300°С (рис. 5., б). Газ-носитель захватывает молекулы пентаоксида и пере­носит их в зону диффузии. Между кремнием и Р2О5 происходит химическая реакция, в результате которой выделяются элемен­тарный фосфор и оксид кремния, образующие стеклообразное соединение на поверхности пластины, из которого и происходит диффузия. Ряд желательных характеристик имеет жидкий источ­ник фосфора (оксихлорид фосфора РОСl3). Он не гигроскопичен, имеет малый расход, стабилен по концентрации фосфора при длительном использовании. Механизм диффузии из жидкого источ­ника аналогичен диффузии из Р2О5, так как жидкие источники реагируют с избыточным кислородом, образуя Р2О5. На поверхностную концентрацию влияют расход РОСl3, температура источ­ника, диаметр диффузионной трубы, конструкция отражателя па­ров и состав газа-носителя. Как правило, по воспроизводимости и возможности регулирования параметров системы с источником в жидкой фазе лучше, чем системы с источником в твердой фазе. С тем же успехом используют трихлорид РС13 и пентафторид фосфора PF5.

В системах диффузии фосфора в открытой трубе из газообраз­ного источника обычно используют фосфин РНз. Механизм диф­фузии из РНз такой же, как и из Р2О5, поскольку он превра­щается в фосфорный ангидрид в результате окисления, когда по­ступает в нагретую диффузионную камеру. Для регулирования поверхностной концентрации применяют разбавление РНз инерт­ным газом. Фосфин не поглощает воду. С помощью этой системы можно получить низкую поверхностную концентрацию, однако управление концентрацией затрудняется вследствие неконтроли­руемого поглощения кварцевыми трубами ангидрида фосфора.

Самым распространенным источником в твердой фазе, исполь­зуемым для диффузии бора в открытой трубе, является борный ангидрид В2О3. В зоне источника бора диффузионной трубы поддерживается температура порядка 900°С. При соприкосновении борного ангидрида с кварцем происходит расстекловывание и кварц становится непригодным к употребле­нию. Для устранения недостатков В2О3 ( или Н3ВО3) смешивают с SiO2, используя метод совместного осаждения из тетраэтилорто-силиката SiO (СН3СН2)4. Это позволяет регулировать поверхностную концентрацию в широких пределах.

Наиболее распространенный источник в жидкой фазе, исполь­зуемый в системах диффузии бора в открытой трубе,— это трехбромистый бор ВВгз. Поверхностной концентрацией управляют, изменяя температуру диффузии, температуру источника и расход потока газа-носителя.

Наиболее удобным источником для управления процессом диффузии являются гидриды легирующих элементов. В качестве примера рассмотрим использование В2Н6. Диборан используют в восстановительной или нейтральной среде в разбавленном (Ar, N2, H2) виде, содержащем до 0,05% диборана. При Т > 300 0С происходит пиролиз В2Н6 с образованием элементарного бора. Лучшей воспроизводимостью обладают системы с окислительной средой, содержащей до 0,01% В2Н6 и до 2,5 % 02 в аргоне или азоте. Диборан взаимодействует с кислородом, образуя борный ангидрид и воду. Присутствие воды значительно увеличивает скорость испарения борного ангидрид, что обусловливает равномерное распределение диффузанта вдоль рабочей зоны вследствие образования летучих борных кислот, особенно метаборной НВО2. Недостатками В2Н6, как и всех гидридов, являются токсичность и легкая воспламеняемость на воздухе при концентрациях более 0,8%

На рис.6 представлены температурные зависимости коэффициентов диффузии В, Al, P и As в кремнии.

Рис. 6. Зависимость коэффициентов диффузии примесей в кремнии

Следует отметить, что при использовании сухих инертных газов и водорода наблюдается эрозия поверхности кремния. При использовании азота и наличии высокой температуры наблюдается образование нитридов, которые выпада­ют на поверхность.

Однако использование слабоувлажненных инертных газов или сухого кислорода приводит к хорошим результатом. Причиной тому, является образование на поверхности кремния тонкой пленки окисла, которая пре­пятствует эрозии, но пропускает диффузант. Затем, при последующем травлении в плавиковой кислоте, она удаляется, и поверхность кремния остается гладкой.

В случае высокой влажности окисная пленка частично раство­ряется в парах воды и хуже осуществляет защиту поверхности. Влажность паров регулируется температурой воды в увлажнителе (барботере). Влаж­ность газа-носителя оказывает также влияние на скорость испаре­ния ряда диффузантов.

Преимущество данного метода — хорошая воспроизводимость, а его недостаток — трудность получения высокой поверхностной концентрации (выше 1018 см-3) и наличие в той или иной степени эрозии поверхности кремния.

Чтобы полностью избежать поверхностной эрозии чистые эле­менты III или V группы заменяют их окислами, в результате чего диффузия идет из стекловидных слоев, образующихся на поверхности. Особенно хорошие результаты это дает в случае применения соединений В2О3 и Р2О5.

Взаимодействие окислителя с кремниевой подложкой приводит к образованию слоя окисла SiO2. Упрощённо механизм диффузионного дегирования может быть представлен следующей схемой. Окислитель и примесь, содержащиеся в газовой фазе (при легирования из внешнего источника), адсорбируются окислом, растворяются в нем и взаимодействуют между собой, образуя примесно-силикатное стекло.

n P2O5 + m SiO2 → P2nSimО5n + 2m

В результате образуется двухслойная плёнка: стекло - двуокись кремния. Граница раздела этой двухслойной системы постепенно перемещается и достигает подложки. На внутренней границе протекают окислительно-восстановительные реакции типа:

Образующаяся элементарная примесь диффундирует в кремний.

Аналогично идет процесс и в случае применения В2О3:

n B2O3 + m SiO2 → В2n Sim03n +2m.