Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЭЦ.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.13 Mб
Скачать

6) Цепи синусоидального тока. Баланс мощности

Из закона сохранения энергии следует, что в любой цепи соблюдается баланс как мгновенных, так и активных мощностей. Сумма всех отдаваемых мощностей равна сумме всех получаемых мощностей. Пусть общее число узлов схемы равно n. По I закону Кирхгофа:

Умножим каждое уравнение на комплексный потенциал узла, для которого составлено уравнение:

Просуммируем все уравнения с учетом того, что сопряженные комплексные токи входят в эти уравнения дважды (для двух различных направлений), причем и т.д. В результате получим

В этом выражении столько слагаемых, сколько ветвей, и каждое слагаемое представляет собой комплексную мощность ветви . Таким образом, сумма комплексных получаемых мощностей во всех ветвях равна нулю. Полученное равенство выражает баланс мощностей . Из него следует равенство нулю в отдельности суммы определяемых активных и суммы определяемых реактивных мощностей.

В заимное направление токов и напряжений на потребителях и на источниках противоположно. Поскольку отрицательные получаемые мощности представляют собой мощности отдаваемые, то можно утверждать, что суммы всех отдаваемых и всех получаемых реактивных мощностей равны друг другу: или .

.

При равенстве сумм комплексных величин суммы их модулей в общем случае не равны друг другу. Отсюда следует, что для полных мощностей S баланс не соблюдается.

7) Цепи синусоидального тока. Метод контурных токов

Алгоритм расчета цепей гармонического тока методом контурных токов аналогичен тому же для цепей постоянного тока с поправкой на символический метод. Все методы расчета цепей переменного тока получены на основе законов Кирхгофа, однако применение этих методов имеет особенности, основанные на том, что переменными параметрами цепей являются комплексные переменные.

При расчете МКТ полагают, что в каждом независимом контуре течет свой контурный ток. Ур-я составляют относительно контурных токов, после чего определяют токи ветвей через контурные токи. За искомые принимают контурные токи. Число неизвестных в этом методе равно числу ур-й, которые необходимо было бы составить для схемы по II закону Кирхгофа, т.е. .

При решении задачи данным методом составляется система уравнений вида

,

где – квадратная матрица комплексных сопротивлений, в которой  – собственное комплексное сопротивление,  – общее компл. сопр. i и j контуров;

– матрица-столбец контурных токов; – матрица-столбец контурных ЭДС.

Общая методика расчета цепи постоянного тока методом контурных токов:

  1. Обозначить все токи ветвей и их положительное направление.

  2. Произвольно выбрать совокупность p независимых контуров, нанести на схему положительное направление контурных токов, протекающих в выбранных контурах.

  3. Определить собственные, общие сопротивления и контурные ЭДС и подставить их в систему уравнений.

  4. Разрешить полученную систему уравнений относительно контурных токов, используя метод Крамера.

  5. Определить токи ветвей через контурные токи по I закону Кирхгофа.

  6. В случае необходимости, с помощью обобщенного закона Ома определить потенциалы узлов.

  7. Проверить правильность расчетов при помощи баланса мощности.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]